3D Static Strength Prediction Program™ User's Manual

Version 7.1.0

velocityEHS° | humantech°

VelocityEHS – Reach Your EHS Goals Faster.

© 2001-2020 VelocityEHS. All rights reserved. VelocityEHS[®], MSDSonline[®], Humantech[®] and ChemTel[®] are proprietary trademarks of VelocityEHS. All other trademarks are the property of the respective owners.

Updated: 12/4/2020

Contents

Chap	ter 1: II		5
1.1	PURPOS	E OF MANUAL	5
1.2	CAUTIO	N	5
1.3	BACKGR	OUND	5
	1.3.1	Static Strength Model	5
	1.3.2	L5/S1 Forces and Moments	7
	1.3.3	3D Compression and Torso Muscle Force	
		Optimization at L4/L5	8
1.4	MEASUF	REMENT COORDINATE SYSTEM	9
1.5	KEYBOA	RD SHORTCUTS1	0
1.6	ERROR F	REPORTING1	0
1.7	SPECIAL	DEFINITIONS 1	0
1.8	SPECIAL	TYPEFACES1	1
1.9	3DSSPP	PROGRAM FIGURES WITHIN THIS MANUAL 1	1
Chap	ter 2: G	ETTING STARTED1	2
2.1	INSTALL	ATION 1	2
2.2	STARTIN	IG THE PROGRAM1	2
2.3	ACTIVAT	TION CODES1	2
2.4	EVALUA	TION OPERATION1	3
2.5	STARTU	P SCREEN 1	3
Chap	ter 3: S	CREEN AREAS AND DIRECT POSTURE	
MAN	IPULAT	TON14	4
3.1	PROGRA	M WINDOW1	4
3.2			1
	PRUGRA	(IVI IIILL DAN	4
3.3	MENU B	AR	4 5
3.3 3.4	MENU B	AR	4 5 5
3.3 3.4	MENU B STICK-VI 3.4.1	AR1 EW WINDOWS1 Manipulate Size and Position1	4 5 5 6
3.3 3.4	MENU B STICK-VI 3.4.1 3.4.2	AR1 EW WINDOWS1 Manipulate Size and Position1 Grid Options1	4 5 5 6 7
3.3 3.4 3.5	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I	AR1 EW WINDOWS1 Manipulate Size and Position1 Grid Options1 MANIPULATION OF POSTURE1	4 5 5 6 7 7
3.3 3.4 3.5	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1	AR	4 5 5 6 7 7 7
3.3 3.4 3.5	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2	AR	4 5 6 7 7 9
3.3 3.4 3.5	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3	AR	4 5 6 7 7 9 9
3.33.43.5	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4	AR	4 5 5 6 7 7 9 9
3.33.43.5	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4	AR	4 5 5 6 7 7 9 9 0
3.33.43.53.6	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4 AVATAR	AR	4 5 6 7 7 9 9 0
3.33.43.53.6	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4 AVATAR 3.6.1	AR	4 5 5 6 7 7 9 9 0 1
 3.3 3.4 3.5 3.6 3.7 	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4 AVATAR 3.6.1 STATUS	AR	4 5 5 6 7 7 9 9 0 1 1 2
 3.3 3.4 3.5 3.6 3.7 	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4 AVATAR 3.6.1 STATUS 3.7.1	AR	4 5 5 6 7 7 9 9 0 1 1 2 3
 3.3 3.4 3.5 3.6 3.7 	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4 AVATAR 3.6.1 STATUS 3.7.1 3.7.2	AR	4 5 5 6 7 7 9 0 1 1 2 3 3
3.33.43.53.63.7	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4 AVATAR 3.6.1 STATUS 3.7.1 3.7.2 3.7.3	AR	4 5 5 6 7 7 9 9 0 1 1 2 3 3 3
3.33.43.53.63.7	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4 AVATAR 3.6.1 STATUS 3.7.1 3.7.2 3.7.3 3.7.4	AR	4 5 5 6 7 7 9 9 0 1 1 2 3 3 3 3 3
3.33.43.53.63.7	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4 AVATAR 3.6.1 STATUS 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5	AR	4 5 5 6 7 7 9 9 0 1 1 2 3 3 3 3
3.33.43.53.63.7	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4 AVATAR 3.6.1 STATUS 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5	AR	4 5 5 6 7 7 9 9 0 1 1 2 3 3 3 3 3 3
3.33.43.53.63.7	MENU B STICK-VI 3.4.1 3.4.2 DIRECT I 3.5.1 3.5.2 3.5.3 3.5.4 AVATAR 3.6.1 STATUS 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5	AR	4 5 5 6 7 7 9 9 0 1 1 2 3 3 3 3 3 4

	3.7.8	Localized Fatigue24
3.8	ANIMA	ΓΙΟΝ FRAME CONTROL BAR25
3.9	STATUS	BAR25
3.10	REPORT	WINDOWS
Chap	ter 4: F	ILE MENU COMMANDS
4.1	NFW	26
4.2	OPEN	
13	SAVE	26
ч.5 Л Л		20
4.4 1 E		
4.5	SEISIA	TADTUD TASK TO CORRENT
4.6	RESETS	TARTUP TASK
4./	PRINTP	*REVIEW
4.8	PRINT S	ETUP27
4.9	PRINT A	CTIVE WINDOW27
4.10	PRINT A	PPLICATION27
4.11	PRINT D	DESKTOP
4.12	COPY A	CTIVE WINDOW28
4.13	COPY A	PPLICATION28
4.14	COPY D	ESKTOP
4.15	PRINTIN	IG USING THE WINDOWS CLIPBOARD
4.16	EXIT	
4.17	PRINTIN	IG AND COPYING FROM POPUP DIALOGS
Chap	ter 5: E	DIT MENU COMMANDS
5.1	UNDO/F	REDO POSTURE CHANGES
5.2	UNDO/I	REDO FRAMES
5.3	FRAME	CUT, COPY, PASTE
Chap	ter 6: T	ASK INPUT MENU COMMANDS31
6.1	DESCRIF	PTION
6.2	SET ME	TRIC / ENGLISH UNITS
6.3	GRAVIT	
6.4		Υ
	SUPPOF	Y
	SUPPOF 6.4.1	Y
	SUPPOF 6.4.1 6.4.2	Y
	SUPPOF 6.4.1 6.4.2 6.4.3	Y32RT SELECTION32Feet Support32Seated Support Mode33Seating Parameters34
	SUPPOR 6.4.1 6.4.2 6.4.3 6.4.4	Y
	SUPPOF 6.4.1 6.4.2 6.4.3 6.4.4	Y
6.5	SUPPOR 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO	Y32RT SELECTION32Feet Support32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-View34Windows34OPOMETRY34
6.5	SUPPOR 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1	Y32RT SELECTION32Feet Support32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-View34Windows34OPOMETRY34Gender35
6.5	SUPPOR 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1 6.5.2	Y32RT SELECTION32Feet Support32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-View34Windows34DPOMETRY34Gender35Avatar Type35
6.5	SUPPOR 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1 6.5.2 6.5.3	Y32RT SELECTION32Feet Support.32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-View34Windows34OPOMETRY34Gender35Avatar Type35Height and Weight35
6.5	SUPPOF 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1 6.5.2 6.5.3 6.5.4	Y32RT SELECTION32Feet Support.32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-View34Windows34OPOMETRY34Gender35Avatar Type35Height and Weight35Show/Edit Current Anthropometry Values37
6.5	SUPPOF 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5	Y32RT SELECTION32Feet Support.32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-ViewWindows34OPOMETRY34Gender35Avatar Type35Height and Weight35Show/Edit Current Anthropometry Values37Shoes38
6.5	SUPPOF 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6	Y32RT SELECTION32Feet Support.32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-ViewWindows34DPOMETRY34Gender35Avatar Type35Height and Weight35Show/Edit Current Anthropometry Values37Shoes38Maintain Hand Positions38
6.5	SUPPOF 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.5.7	Y32RT SELECTION32Feet Support.32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-ViewWindows34DPOMETRY34Gender35Avatar Type35Height and Weight35Show/Edit Current Anthropometry Values37Shoes38Maintain Hand Positions38Modify Population Factors38
6.5	SUPPOR 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.5.7 6.5.8	Y32RT SELECTION32Feet Support.32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-ViewWindows34OPOMETRY34Gender35Avatar Type35Height and Weight35Show/Edit Current Anthropometry Values37Shoes38Maintain Hand Positions38Modify Population Factors39
6.5	SUPPOF 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.5.7 6.5.8 HAND L	Y32RT SELECTION32Feet Support.32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-ViewWindows34OPOMETRY34Gender35Avatar Type35Height and Weight35Show/Edit Current Anthropometry Values37Shoes38Maintain Hand Positions38Modify Population Factors39OADS45
6.5	SUPPOF 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.5.7 6.5.8 HAND L 6.6.1	Y32RT SELECTION32Feet Support.32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-ViewWindows34DPOMETRY34Gender35Avatar Type35Height and Weight35Show/Edit Current Anthropometry Values37Shoes38Maintain Hand Positions38Modify Population Factors38Population Anthropometric Factors39OADS45Horizontal Hand Force Angle46
6.5	SUPPOF 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.5.7 6.5.8 HAND L 6.6.1 6.6.2	Y32RT SELECTION32Feet Support.32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-ViewWindows34DPOMETRY34Gender35Avatar Type35Height and Weight35Show/Edit Current Anthropometry Values37Shoes38Maintain Hand Positions38Modify Population Factors38Population Anthropometric Factors39OADS45Horizontal Hand Force Angle46Vertical Hand Force Angle46
6.5	SUPPOF 6.4.1 6.4.2 6.4.3 6.4.4 ANTHRO 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.5.7 6.5.8 HAND L 6.6.1 6.6.2 6.6.3	Y32RT SELECTION32Feet Support.32Seated Support Mode33Seating Parameters34Showing Seat Support Forces in the Stick-ViewWindows34DPOMETRY34Gender35Avatar Type35Height and Weight35Show/Edit Current Anthropometry Values37Shoes38Maintain Hand Positions38Modify Population Factors38Population Anthropometric Factors39OADS45Horizontal Hand Force Angle46Hand Force Solver Feature47

	6.6.4	Enter Hand Loads by Components
6.7	EXTERN	AL APPLIED FORCES AND MOMENTS
	6.7.1	Zero Current / Zero All
	6.7.2	External Load at Head Center
	673	External Loads at the Heels or Balls of the
	0.7.5	Feet 49
60		
0.8	BODISI	EGIVIEINT ANGLES
	6.8.1	Body Segment Angle Dialog
	6.8.2	Body Segment Angle Depictions in Stick-View
		Windows
	6.8.3	Body Segment Angles 51
	6.8.4	Head Angles in Segment Angles Dialog58
	6.8.5	Neck Angles Dialog60
	6.8.6	Wrist Angles60
6.9	Pre-set	postures 62
6.10	POSTUR	E PREDICTION
	6.10.1	Introduction to the Inverse Kinematics Method
		of Posture Prediction63
	6.10.2	Standing Posture Prediction Dialog
6.11	LOCK TF	3UNK
6.12	Hand G	rasn Postures 65
0.12	6 1 2 1	Hand Grass Destures Segment Angles
	0.12.1	Direct Manipulation of Fingers
	0.12.2	Direct Manipulation of Fingers
	0.12.3	Pre-Set Hand Postures
6.13	RUN BA	1CH FILE
	6.13.1	Batch File Format
	6.13.2	ANTHROPOMETRY Command
	6.13.3	AUTOEXPORT Command67
	6.13.4	COMMENT Command67
	6.13.5	DESCRIPTION Command67
	6.13.6	EXTERNALFM (Forces and Moments)
		Command67
	6.13.7	EXPORT Command67
	6.13.8	FRAME Command68
	6.13.9	HANDLOADS Command68
	6.13.10	HANDCOMPLOAD Command68
	6.13.11	LOCATIONS Command68
	6.13.12	OUTPUT Command68
	6.13.13	PAUSE Command68
	6.13.14	POSTURE PREDICTION Command
	6.13.15	SEGMENTANGLES Command 69
	6.13.16	SUPPORT Command69
	6.13.17	Example Batch File70
Chap	oter 7: V	/IEW MENU COMMANDS71
7.1	Αυτο τ	ILE
7 2		W 71
72	STRENC	TH LIMITS 71
7.5 7.7		
7.4 7 F	IVIEASU	REIVIENT COURDINATE STSTEIVI ORIGIN
1.5	WINDO	WS AND BARS DISPLAY
7.6	BAR GR	APHS

INSERT BACKGROUND IMAGE......73

Chapter 8: STICK-VIEW MENU COMMANDS74

8.1	SHOW	FORCES	74
8.2	SHOW	SUPPORT FORCES	74
8.3	SHOW	CENTER OF MASS	74
8.4	COLOR	S	75
8.5	GRID O	PTIONS	75
8.6	LOCK T	RUNK	76
8.7	DEFAU	LT VIEW	76
8.8	CHANG	E SIDE-VIEW TO OTHER SIDE	76
8.9	INSERT	BACKGROUND IMAGE	76
8.10	POPUP	CONTEXT MENU	76
Chap	ter 9:	AVATAR-VIEW MENU COMMAN	DS77
9.1	SHOW	FRAME	78
9.2	HUMA	N FIGURE	78
	9.2.1	Avatar Type	78
	9.2.2	Model Type	78
	9.2.3	Bone Links	79
	9.2.4	Clothing Color	79

	9.2.5	Skin Color	79
9.3	ENVIR	ONMENT	79
	9.3.1	Floor	79
	9.3.2	Handheld Object	80
	9.3.3	Barrier	80
	9.3.4	Color	81
9.4	CAME	RA	81
9.5	INSERT	BACKGROUND IMAGE	81
	9.5.1	Image	81
	9.5.2	Color	82
	9.5.3	Figure Transparency	82
	9.5.4	Select Window to Display the Image	82
	9.5.5	Image Orientation	82
9.6	LIGHTI	NG	83

Chapter 10: ANIMATION MENU COMMANDS84

10.1	FRAME PARAMETERS FOR BIOMECHANICAL AI	NALYSES 84
10.2	ANIMATION FRAME CONTROL BAR	
	10.2.1 Playing Animation Frames	85
	10.2.2 Animation Popup Context Menu	85
	10.2.3 Animation Edit Buttons	85
	10.2.4 Inserting a String of Blank Frames	85
10.3	IMPORT C3D FILE	
10.4	IMPORT LOCATION FILE	
10.4	PREDICT REACH MOTION	
	10.4.1 Initial and Final Postures	
	10.4.2 Motion Length	
10.5	EXPORT AVI FILE	
10.6	SET FRAMES/SECOND	

7.7

Chap	ter 11:	REPORTS MENU COMMANDS
11.1	TASK IN	PUT SUMMARY REPORTS91
11.2	ANALYS	IS SUMMARY REPORT92
	11.2.1	Hand Forces92
	11.2.2	Percent Capable92
	11.2.3	Disk Compression Force
	11.2.4	Localized Fatigue93
	11.2.5	Leg Load and Balance93
	11.2.6	Required Coefficient of Ground Friction93
11.3	LOCALIZ	2ED FATIGUE REPORT
11.4	3D LOW	BACK ANALYSIS REPORT95
11.5	SAGITTA	AL PLANE LOW BACK ANALYSIS REPORT
	11.5.1	Estimated L5/S1 Ligament Strain
11.6	STRENG	TH CAPABILITIES REPORT97
11.7	ANTHRO	DPOMETRY REPORT
11.8	BALANC	E REPORTS
	11.8.1	Center of Body Mass Calculation
	11.8.2	Center of Pressure Calculation
	11.8.3	Base of Support101
	11.8.4	Center of Pressure Graphic 101
	11.8.5	Stability Balance Condition 102
	11.8.6	Leg Loads102
	11.8.7	Support Forces 102
	11.8.8	Residual Support Moments 102
	11.8.9	Maximum Balance Moments102
11.9	CENTER	OF MASS LOCATIONS REPORT103
11.10	JOINT LO	OCATIONS REPORT104
11.11	JOINT F	ORCES REPORT105
11.12	JOINT N	10MENTS REPORT106
11.13	POSTUR	E REPORT 107
	11.13.1	Range of Joint Motion Limits107
11.14	STRENG	TH DIRECTION VECTORS REPORT 108
11.15	PRINT R	EPORTS COMMAND 109
11.16	EXPORT	REPORT DATA 109
	11.16.1	Export Output File Format 110
REFE	RENCES	5112
INDE	X TO SE	CTIONS 116

This page intentionally blank.

Chapter 1: INTRODUCTION

The 3D Static Strength Prediction Program TM (3DSSPP) is based on over 40 years of research at the University of Michigan's Center for Ergonomics regarding the biomechanical and static strength capabilities of the employee in relation to the physical demands of the work environment. This manual provides the user of the 3D Static Strength Prediction Program with an instructional reference for properly applying the 3DSSPP to aid in the evaluation of the physical demands of a prescribed job. For a complete discussion of occupational biomechanics and details on the mathematical models see Occupational Biomechanics; 4th Edition by Chaffin, Andersson, and Martin; 2006 (published by J. Wiley & Sons, Inc., 605 Third Ave., New York, NY 10158). This is an excellent reference.

The 3DSSPP can aid the ergonomics analyst as a design and evaluation tool in both proactive and reactive analysis of workplaces and work tasks. It can be a valuable quantitative tool to illustrate the benefits of an ergonomic intervention. It is often used for instructional purposes in the classroom, plant floor, and board room.

1.1 PURPOSE OF MANUAL

The primary purpose of this manual is to document:

- 1. The task parameters, inputs to the program, and how they are measured.
- 2. The entry of the task parameters.
- 3. The program options.
- 4. The program outputs.

1.2 CAUTION

3DSSPP should not be used as the sole determinant of worker strength performance or job designs based on that performance. Other criteria and professional judgment are required to properly design safe and productive jobs. Be sure to read the End-User License Agreement at the beginning of this manual.

1.3 BACKGROUND

3DSSPP is most useful in the analysis of the "slow" movements used in heavy materials handling tasks since the biomechanical computations assume that the effects of acceleration and momentum are negligible.

Such tasks can be evaluated best by dividing the activity into a sequence of static postures and analyzing each individual posture.

To aid in posture entry, an inverse kinematics algorithm was developed from research on the preferred postures of individuals manipulating loads with known hand positions. This behavioral-based algorithm is intended to provide a first approximation of the posture based on the specified hand positions and torques and forces on the hands and joints. However, the inverse kinematics algorithm may not yield a posture representative of the actual posture being modeled since the actual posture can be affected by individual factors such as differences in body type, postural preference and training, as well as environmental factors such as the nature of the object being handled, workplace obstructions, traction and the feet-floor interface, and worker apparel. To minimize these effects, only experienced workErs should be observed performing the tasks in question. Should additional posture modifications be necessary, the program contains easy-to-use methods for altering the initial predicted posture to more closely represent the posture observed in the workplace.

1.3.1 Static Strength Model

A technical discussion of the static strength model used in the program is provided in Chapter 6 of *Occupational Biomechanics; 4th Edition* by Chaffin, Andersson, and Martin; 2006 (published by J. Wiley & Sons, Inc., 605 Third Ave., New York, NY 10158). The 3DSSPP strength model is a topdown model starting with the forces and moments applied to the hands and ending with the forces and moments applied to the floor by the feet (in the basic standing case). Figure 1.1 illustrates many of the force and moment vectors calculated by the model.

The reactive moments at each joint required to maintain the posture are compared to worker population strengths. These strengths have been compiled from a collection of strength studies described and referenced in the text as well as from some additional studies offering updated experimental joint strength capabilities of industrial and civilian populations. See the Strength Capabilities Report (Section 11.6). Results from this model demonstrate a strong correlation with average population static strengths (r = 0.8).

1.3.1.1 SDL and SUL Strength Limits

NIOSH recommended limits for percent capables (percent of the population with sufficient strength) are used in the program by default. Other limits may be set by the user (Section 7.3).

The 3DSSPP Strength Limits are named Strength Design Limit (SDL) and Strength Upper Limit (SUL) and correspond to the NIOSH Action Limit (AL) and Maximum Permissible Limit (MPL). These values are documented in the <u>Work Practices Guide for</u> <u>Manual Lifting</u> (NIOSH, 1981).

Figure 1.1: Diagram of the strength model

The SDL designation is delimited in the program bar graphs by the green to yellow transition and is set at 99% for men or 75% for women. The SUL designation, on the other hand, is delimited by the yellow to red transition and is set at 25% for men or 1% for women.

The SDL guidelines are consistent with the biomechanical and psychophysical criteria used to develop the revised 1991 lifting equation (Waters et al, 1993) while the SUL are consistent with the criteria used to develop the 1981 equation. Because the 1991 version has moved from a three-stage decision matrix to a single lifting index in assessing the risk of low-back pain, these upper limits were not included as criteria for the 1991 version. Further discussion concerning the back compression design and upper limits as well as the basis for strength design and upper limits can be found in <u>Occupational Biomechanics</u>, Chaffin 2006.

1.3.2 L5/S1 Forces and Moments

The Lumbar Disc Compression Force at L5/S1 disc level is calculated as the sum of Erector Spinae / Rectus Abdominus (either one active per posture), abdominal force, upper body weight above L5/S1 level, and hand load (Figure 1.2). Furthermore, forces acting upon the L5/S1 disc are resolved to compute the shear components in the anteriorposterior and Lateral directions. The vector sum of these two shear forces is called the "Resultant Shear Force" on the L5/S1 disc. In addition to the Resultant Shear Force, the disc may be subjected to further stress due to those loading and postural conditions which create torsion about the longitudinal axis of the L5/S1 disc, often called the "Moment about the L5/S1 disc normal". Uneven hand loads and/or rotation of the torso from side to side during the task can easily generate an axial rotation moment normal to L5/S1 disc (Figure 1.3).

Figure 1.2: Simplistic diagram of sagittal model low-back forces for lifting

For a typical lifting task, the low-back Erector Spinae muscle produces a contractile force, acting at the muscle moment arm distance (this varies between male and female), for the moment equilibrium at L5/S1 level. Abdominal force, acting at the abdominal moment arm distance (which also varies between males and females as well as between population percentiles), also is balancing the moment equilibrium on the Erector Spinae muscle side of the equation (i.e., helping to reduce the required Erector Spinae muscle force). According to the model's algorithm for a press-down task, however, the anterior rectus abdominus muscle would produce a contractile force to maintain L5/S1 moment equilibrium, acting at the muscle moment arm distance (which also varies between males and females as well as between population percentiles). As documented so far, the L5/S1 compression algorithm is based on Erector Spinae muscle contraction, Rectus Abdominus muscle contraction (either one active at any given time), the Abdominal Pressure (affected by posture), and the resultant moment and forces at L5/S1 joint.

Erector Spinae, Rectus Abdominus, and Abdominal Force computation for L5/S1 moment equilibrium are based on the moment arm length data (with standard deviation) as compiled from studies by mcgill, Patt and Norman (1988); Reid, Costigan & Comrie (1987); Nemeth and Ohlsen (1986); and Chaffin, Redfern, Erig and Goldstein (1989).

1.3.3 3D Compression and Torso Muscle Force Optimization at L4/L5

Torso muscle moment arms and muscle orientation data for the L4/L5 level have been studied more extensively than at any other lumbar level. Hence, the three dimensional back compression optimization is computed at L4/L5 lumbar level. L4/L5 level torso muscle (five on the left side and five on the right side) areas, moment arms, and contractile force direction data were utilized from studies by mcgill, Patt and Norman (1988); Reid, Costigan & Comrie (1987); Nemeth and Ohlsen (1986); Chaffin, Redfern, Erig & Goldstein (1989); Kumar (1988), Tracy et. Al. (1989)⁷ and mcgill and Norman (1986).

Torso muscle tensile forces are computed using the double optimization technique of Bean, Chaffin and Shultz (1988). First, an upper bound on muscle intensity (the ratio of muscle force to physiological cross sectional area) is found by minimizing the maximum muscle intensity such that the moment equilibrium conditions are satisfied; and second, the muscle forces satisfying the moment conditions and muscle intensity bounds which minimize the muscular contribution to spinal compression force are determined. L4/L5 joint resultant moments (after the abdominal force effect) and joint forces in three dimensions over the tilted L4/L5 disc, torso muscle moment arms (lateral and anterior-posterior), and muscle areas are the inputs to the three dimensional torso muscle force optimization routine. The routine outputs the resultant muscle contraction forces at the L4/L5 level and the disc compression force as the vector sum of muscle (ten muscles) contractile forces, abdominal force, upper body weight above L4/L5 level, and the hand loads.

Depiction of torso muscle areas and orientation with respect to the L4/L5 disc is shown in Figure 1.4. The initials "L" and "R" before the muscle labels represent the Left (in the - X quadrant) and Right (in the + X quadrant) sides of torso. The vector sum of Anterior-Posterior Shear Force and Lateral Shear Forces represents the Total Shear Force.

Figure 1.3: Shear forces and torsion on a vertebral disc

1.3.3.1 Low Back Compression Limits

NIOSH recommended limits are use for evaluation the back compression values in 3DSSPP. The Back Compression Back Compression Design Limit (BCDL) and the Back Compression Upper Limit (BCUL) correspond to the NIOSH Action Limit (AL) and Maximum Permissible Limit (MPL). The limiting values are documented in the <u>Work Practices Guide for Manual Lifting</u> (NIOSH, 1981).

The BCDL guidelines are consistent with the biomechanical and psychophysical criteria used to develop the revised 1991 lifting equation (Waters et al, 1993) while the BCUL are consistent with the criteria used to develop the 1981 equation. In the 3DSSPP the BCDL is delimited in the bar graphs by the green to yellow transition and the BCUL is delimited by the yellow to red transition. Because the 1991 version of the Lifting Guide has moved from a three-stage decision matrix to a single liftingindex in assessing the risk of low-back pain, these upper limits were not included as criteria for the 1991 version. Further discussion concerning the back compression design and upper limits as well as the basis for strength design and upper limits can be found in <u>Occupational Biomechanics</u>, Chaffin 2006.

1.4 MEASUREMENT COORDINATE SYSTEM

3DSSPP uses a Cartesian coordinate system of X, Y, and Z axes. The directions of the axes are defined with respect to the center of the pelvis. The X -axis extends laterally (left to right hip center) with positive to the avatar's right. The positive Yaxis extends forward (horizontal) and the positive Z-axis extends vertically with positive upwards. This forms a righthad coordinate system.

The center of the measurement coordinate system can be set using the Measurement Coordinate Center Dialog (Section 7.4). The default center for standing mode cases is at the center of the feet. (Center of the ankles projected downward to the floor support of the lowest foot.) For seated mode cases the default center is at the Seat Reference Point (SRP). The SRP is automatically calculated from the intersection of the trunk and upper leg angles and is displaced perpendicular to the body segments by population factors which are fraction of stature.

Figure 1.4: Low-back forces and moments

1.5 KEYBOARD SHORTCUTS

There are keyboard shortcuts for many operations and commands for accessibility. To change to a different selected window press CTRL Tab. Select a menu by pressing the ALT key and the underlined menu letter which appears. To select a command from within a menu press the up or down keyboard arrow. Many common commands can also be selected by holding the CTRL key and pressing a letter. The letters available are listed in the menus.

1.6 ERROR REPORTING

Considerable effort has been made to eliminate software errors ("bugs") from this version of the 3DSSPP software prior to release.

If, however, a software error occurs at any time during 3DSSPP operations, the computer system will display an error message and request to close the application. Should this occur, please note the posture being analyzed, any other programs currently running, and the version of the computer system. Then please copy the message in its entirety, close the application, and contact us as below.

www.humantech.com

1.7 SPECIAL DEFINITIONS

This manual assumes the user is familiar with basic Windows terminology such as icons, clipboard, Dialog boxes, click, drag, and re-sizing windows. If this is not the case, please refer to the Windows Help for additional details. In addition, the following definitions will aid in understanding the descriptions and instructions found in this manual:

- *Stick-Views*: The three posture entry windows displaying the posture being modeled in top, right side, and front views.
- Avatar-View: The window displaying a figure in the posture modeled from a user-defined orientation. In new files, this is the lower left hand window.

- Vertical Tilt: Referring to the camera metaphor of the avatar-view, this is a measure of the angle from the horizontal plane at which the object is being observed. Ranging from -89 to 89 degrees, 0 degrees is at waist level looking at the object and 89 degrees is directly overhead looking down on the object.
- Rotation: Also referring to the camera metaphor of the avatar-view, this is a measure of the angle from a vertical plane separating the left and right halves of the object at which it is being observed. Ranging from -180 to 180 degrees, 0 degrees is looking directly at the front of the figure while 90 degrees is looking at the figure's left side.
- Focal Length: Also referring to the camera metaphor of the avatar-view, this simulates the effect of the camera focal length on the image for better posture matching with photographs. Long focal lengths magnify and flattenimages while short focal lengths shrink and distort images.
- *Distance*: Referring to the camera metaphor of the avatar-view, this is the distance from which the figure is observed.
- *Input Field*: The section of the screen highlighted or underlined by the cursor.
- *Model Output*: All of the output with respect to one set of task parameters. Only part of the output is displayed on the screen at any one time.
- *Posture*: The different angles about the joints of the body describing the orientation of the body in space.
- *Reactive Load*: Reaction force or moments provided by the body's musculoskeletal system to the resultant load.
- Record: One set of task parameters.
- *Resultant Load*: The load in force or moments acting upon the body.
- *Task Parameters*: Data describing the task including the force magnitude and direction, anthropometry, and postural angles.

1.8 SPECIAL TYPEFACES

The format described below is used throughout the manual to indicate if or when information should be entered or a key pressed, to describe messages that appear on the screen, and outline examples used within the manual.

 If instructed to type information, the information will appear in capital letters. For example, if a task description is to be typed, the instruction will appear as follows:

Type: CART PUSHING TASK

2. If one key is to be pressed, the key to be pressed will appear in bold faced text. For example, if the TAB key is to be pressed, the instruction will appear as follows:

Press: TAB

3. If two keys are to be pressed at the same time, the keys to be pressed will appear in bold faced text with a plus sign (+) between them. The first key should be held while the second key is pressed. For example, if instructed to hold ALT and press prtsc (print screen), the instruction will appear as follows:

Press: ALT+PrtSc

4. If a specific menu sequence is to be followed, the sequence will appear in italicized bold faced text with a pipe symbol (|) between each item. For example, to access the Units Selection Dialog, the instruction to choose the Task-Input Menu and select the Units item would appear as:

Task Input | Units...

5. Menu and dialog commands will be bold italic and appear as:

Tile Now

1.9 3DSSPP PROGRAM FIGURES WITHIN THIS MANUAL

The figures in this manual are updated to the latest version of the program only when they have changed from the previous version. The online version of the manual is in color which is important in the figures which frequently use color.

Chapter 2: GETTING STARTED

2.1 INSTALLATION

- 1. Insert media or download and find the installation file and double-click its name or icon.
- 2. Follow the on-screen instructions. See the separate installation instructions if needed. Be sure to read the End-User License Agreement.
- 3. If you are evaluating the program, note that the evaluation period begins at the time of installation, not the time of first use.

Your sign on account on your computer may not have sufficient privileges to install new software. If you experience difficulties with installation, consult your IT Professional.

Installation of 3DSSPP on a network (not just a single workstation) requires a special license.

2.2 STARTING THE PROGRAM

To begin working with 3DSSPP, double-click on the main program icon, Figure 2.1, or the filename (3DSSPP.exe). If the program has been added to the Start Menu or task bar, then it can be started from there as well.

Figure 2.1: 3DSSPP Program Icon

2.3 ACTIVATION CODES

If this is the first time the 3DSSPP program has been started or if the trial period is active, then an Activation Code Request dialog will appear. The dialog will request the User Name and two Activation Codes. You can enter the User Name you desire. It will be printed on all analysis reports.

Note that the User Codes are linked to the computer. If you attempt to install the program on another computer or if the internal hardware in your computer has been updated, then you may need to request another set of Activation Codes.

A correct name and activation codes will only need to be entered once. When a major revision of 3DSSPP is released, however, a new name and code may be required.

2.4 EVALUATION OPERATION

To evaluate the 3DSSPP program for up to two weeks simply reply to the Activation Code Request dialog by selecting Cancel. The time period begins when the program is first installed. After the evaluation period a license must be purchased and the activation process completed.

2.5 STARTUP SCREEN

Before the data entry windows appears, a preliminary screen of general information, Figure 2.2, is displayed which should be read carefully if the program is being used for the first time. Either press **ENTER** or select on the **OK** button to continue. After the final information screen, the program will load.

Figure 2.2: Startup screen

Chapter 3: SCREEN AREAS AND DIRECT POSTURE MANIPULATION

3.1 PROGRAM WINDOW

The program window (Figure 3.1) contains the 3DSSPP application with title bar, menu bar, view windows, animation frame control bar, and status bar.

3.2 PROGRAM TITLE BAR

At the top of the main program window is the main program title bar which contains the program title, the name of the postural data file currently in use, and standard Windows control buttons for the entire program (Figure 3.2). If the task file has been modified from its last saved state, an asterisk will appear in the title bar after the filename. Clicking the right mouse button (right-clicking) on the title bar will open a context menu with additional commands to manipulate the program window. The title bars of the program, sub-windows, and report windows also have a popup menu (right click) which is useful for printing and copying, see Figure 3.3.

Figure 3.1: Main program window

Figure 3.2: Example Title Bar Popup Menu

3.3 MENU BAR

Located directly under the program title bar is the menu bar which contains the pull-down menus available in 3DSSPP. Clicking directly on the menu name activates the menu. An alternative method to access the menus via the keyboard is to depress the **ALT** key and then also depress the letter underlined in the menu name. The menus and menu options are described in the following chapters.

3.4 STICK-VIEW WINDOWS

The three stick-view posture entry windows display the posture being modeled in the top, front, and right side views (Figure 3.3). The posture is displayed using stick figures so that joint angles are easily seen. Each Stick-View Window has its own title bar which contains the direction of the view and has buttons on the right side for controlling the size of that window: either normal size or enlarge to full screen for easier posture manipulation (minimize and close buttons are not enabled). The title bar also indicates what coordinate axis lines up with the view The view is from the positive direction of the axis.

Figure 3.3: Stick-View Windows

The body segments of the avatar can be directly manipulated by clicking any joint and dragging it to a new location. When the mouse cursor is over a selectable joint, it will change from an arrow into a hand. The name of the joint currently pointed to will be displayed in the status bar at the bottom of the main window and in a pop up message near the cursor. Direct Manipulation details are found in Section 3.5.

Clicking the right mouse button (right-clicking) inside one of the Stick-View Windows will bring up a popup menu of commands commonly used while entering postures (Figure 3.4). The popup from the side view will also allow a left side view Figure 3.5).

The windows within a program are sometimes referred to as tiles, and the act of arranging the windows is called tiling. The tiling of the three stickview Windows and the other windows is controlled under the View Menu. To automatically fit all five main windows inside the primary program window, just press **Ctrl+T** or select **View | Tile Now**. See Chapters 7 and 8 for additional comments and more details on display options.

Figure 3.4: Stick-View Context Menu

Figure 3.5: Alternative left side view

3.4.1 Manipulate Size and Position

The stick figure can be sized and positioned within the window. To increase or decrease the size use the mouse with the following commands. Note that "**CLICK**" alone always refers to left-clicking.

Zoom in/out:

SHIFT+CLICK+DRAG VERTICAL ROTATE MOUSE WHEEL

Move avatar within window:

CLICK on any segment + DRAG

The Default View command in the popup context menu will return the stick figure to the default location.

3.4.2 Grid Options

A grid to help judge location can be added to the stick-view windows (Figure 3.6). The dialog in Figure 3.7 can be opened from the Stick-View Menu or the Context Menu. Note that the grid lines up with the current center of the coordinate system.

Figure 3.6: Side view with 8-inch grid

3.5 DIRECT MANIPULATION OF POSTURE

To manipulate the posture through the stickview Windows, select the joint to be manipulated by placing the mouse cursor on one of the round solid joint markers on the Stick-View Windows. The cursor changes from the normal arrow to a pointing finger when the cursor is over a marker and a descriptive popup message appears (Figure 3.8). The message describes the action to take place when the cursor is moved. Upon pressing the **LEFT MOUSE BUTTON** the marker is selected the cursor changes to a set of cross hairs. Moving the mouse will now move the joint while the posture adjusts. When the mouse button is released the cross hairs vanish and the joint is no longer selected. Joints with hollow markers cannot be selected. They may not be directly movable or they may be locked (Section 6.11).

3.5.1 Moving Joint Markers

Moving joint markers as described above invokes the program's Posture Prediction feature which is an inverse kinematics algorithm with some posture preference information included, see Section 6.10. Moving joints using direct manipulation is similar to the Posture Prediction command with the addition of the constraint of the joint being moved. The default constraints are the locations of the hands and feet.

Figure 3.7: Stick-View Grid Options Dialog

Figure 3.8: Selecting marker to Move Left Hand and using LEFT MOUSE BUTTON

Joint locations can be selected and moved in any of the three Stick-View windows, however one window is usually better than the others depending upon the direction of desired movement. Some practice may be required.

Joints can sometimes be moved to locations that are not physically possible for all people. The algorithm is constrained by body segment lengths but not by joint range of motion. If joint range of motion is exceeded, then the joint marker will turn red to indicated a possible problem. The analysist can view the Posture Report to evaluate the range of motion issue. Balance is not considered during direct manipulation and must be monitored by the user. If a joint is moved beyond a possible location, then the figure ceases to move until the curser is returned to a feasible location.

If the hips are moved then all of the joints between the hands and feet may be adjusted. Moving selected joints above the hips will only affect the upper body and moving selected joints below the hips will only adjust the lower body.

In standing mode the position of the floor on the screen is always the same. Therefore, if one foot is lifted off the ground and then the other is lifted, the body will drop to the floor. The floor is defined to be located at the level of the lowest foot. Both feet are always assumed to be supported, even when positioned at different levels. For one foot support, see Support Selection (Section 6.4). Note that by default the hand locations are measured with respect to the center of the ankles at the lowest floor in standing mode. Thus if one foot is moved, then the origin of the measurement is moved and the numerical hand locations will change, but the relative location of the hands to the stationary foot will be maintained. To change the measurement center see Measurement Coordinate System Origin (Section 7.4).

Finally, by holding down the CONTROL keythe user can move both hands or both feet at the same time (Figure 3.9). This can be very convenient.

Figure 3.9: Selecting marker to Move Left Hand using **LEFT MOUSE BUTTON**

3.5.2 Rotating Body Segments about a Joint

If the **SHIFT** key is pressed while the mouse cursor arrow is moved over a solid joint marker a different popup message will appear and describe an available rotation about a joint (Figure 3.10). Upon pressing the left mouse button the marker is selected the cursor changes to a set of cross hairs. Moving the mouse will now rotate the body segment proximal to the selected joint location about the proximal joint. Note that all segments distal to the rotated segment will rotate also. This is not inverse kinematics; but rather simple forward kinematics. The root of the human graphic model is the center of the hips.

The **CONTROL+SHIFT** keys can be similarly used to rotate both the right and left extremities together (Figure 3.11). This currently does not work for the knees.

3.5.3 Direct Manipulation Hints

3.5.3.1 Moving Hips

The most straightforward manner for altering bending postures from stoop to squat or to straightening the legs is by moving the hip center location. The left and the right hip can only be moved in tandem; when the hips are selected, the right and left hip are selected simultaneously. The position of the hips can only be altered in two dimensional (sagittal plane) space and is easiest to manipulate in the side view. To stoop more raise the hips and to squat more lower the hips. To increase the bend in the legs, adjust the hips downward; conversely, to straighten the legs, move the hips upward.

Figure 3.10: Selecting marker to Rotate Left Hand using **SHIFT** and **LEFT MOUSE BUTTON**

Figure 3.11: Selecting marker to Rotate Both Lower Legs using SHIFT+CONTROL, and LEFT MOUSE BUTTON while fingering the ankle

3.5.3.2 Trunk Flexion and Later Bending

Trunk flexion corresponds to the forward bending of the trunk and lateral bending corresponds to side-to-side bending. The center of rotation is the hip. The side view gives the best perspective on trunk flexion. The front view is best for lateral bending. The graphic marker associated with trunk flexion/bending is located at the base of the neck. Either movement or rotation can be selected. Rotation is centered at the L5S1.

Note that within the biomechanical model the trunk is formed by the pelvis and the torso links which are each assigned separate angles based on the entered trunk flexion angle according to an algorithm derived from empirical data (Anderson, 1983). The two links are visible in the human graphics in the display view windows.

3.5.3.3 Trunk Axial Rotation

Trunk axial rotation corresponds to the rotation of the trunk about the axis of the spine. To change the rotation value select and move (or rotate) the solid marker sternum where the clavicles meet. Axial rotation is the most difficult of the joint angles to enter. At times the computer may have difficulty in interpreting the cursor position. Therefore, it may be necessary to click in several locations to see how the computer interprets the cursor position. For this angle, trying the different view windows may be helpful if altering axial rotation in one of the views does not appear to work well; however, in general, the top view tends to be more favorable for erect postures, whereas the front view tends to be easier to manipulate with stoop postures. It may be useful to utilize the Undo program feature (Section 5.1).

3.5.3.4 Head and Neck

To move the head use the graphic marker in the center of the head. To rotate the head, hold down **SHIFT** key and use the graphic marker near the nose (the nasion anatomical location). The relative angles of the head and neck joints is based upon limits of rotation taken from the literature. Also head and neck angles are limited such that strength capability values are valid. More precise posturing of the head and neck can be performed in the **Task-Input | Body Segment Angles** dialog in Section 6.8.

3.5.3.5 Hand Positions

If the locations of the hands in three dimensional space are known, then the best method for specifying the hand locations is to choose **Task-Input | Posture Prediction** to use the Posture Prediction Dialog. However, sometimes the hand locations are not known. In this case, the user may want to set the hand locations by selecting each hand with the mouse and moving them to the desired locations in an appropriate stick-view. The opposite hand will remain in the same location, but the rest of the body will be predicted. *Therefore, the hand positions should be set before altering the rest of the body*.

To select and move both hands at the same time hold down the **CONTROL** key (**Ctrl**), select one of the hands with the **LEFT MOUSE BUTTON**, and move the mouse.

3.5.4 Joint Angle Range Errors - Red Joint Marker Color

If a posture is entered such that a joint angle is outside its range of motion then the joint on the stick-view graphic is set to red. See the Posture Report for range of motion limits.

3.6 AVATAR-VIEW WINDOW

The Avatar-View Window is the lower left hand view window (Figure 3.13) and, by default, displays a shaded flesh human graphic figure with a surface made of over 7000 polygons. The title bar displays the task title as entered under the *Task-Input* | *Description* Menu. Also displayed is an indicator of the Measurement Coordinate Center and the directions of the coordinate axes.

Right-clicking inside the Avatar-View Window will bring up a context menu of commonly used commands (Figure 3.12).

Figure 3.12: Avatar-View Context Menu

3.6.1 Manipulate Avatar View

The avatar-view of the avatar can be manipulated from the Avatar-View Menu (see Chapter 9), by using the context menu as above, or using the mouse with the following commands. Note that "**CLICK**" alone always refers to left-clicking.

Move avatar within window:

CLICK + DRAG

Rotate avatar:

RIGHT-CLICK + DRAG CTRL + CLICK + DRAG

Zoom in/out (camera focal length):

SHIFT+CLICK+DRAG HORIZONTAL

Move camera closer or farther away:

SHIFT+CLICK+DRAG VERTICAL ROTATE MOUSE WHEEL

Figure 3.13: Avatar-View Window

3.7 STATUS WINDOW

This window is positioned in the lower right hand corner of the standard program window. It lists miscellaneous input data and summary results (Figure 3.14). The title bar contains the defined name of the task, the name of the frame, and the number of the current selected frame. The two names are entered from the Task Description dialog (Section 6.1).

The titles of the category boxes in blue can be selected to open dialogs or reports appropriate to each category.

The analysis category boxes also have a "?" Box that will display a short description of the analysis (Figure 3.15).

Figure 3.14: Results Status window

Figure 3.15: Example analysis explanation box

3.7.1 Anthropometry and Hand Forces

The Anthropometry box lists the selected values used in the current analysis. The Forces box list the magnitudes of the hand forces. Note that additional forces and torques may also be included in the analysis yet not listed here.

3.7.2 Hand Locations

The Hand Locations box lists the current calculated hand location. The location is calculated using kinematics given the current posture angles and the anthropometry (body segment lengths). The center of reference for the measures can be set by the user (Section 7.4). In standing mode it defaults to the center of the ankles projected downward to the lowest floor surface. In seated mode the default is the Seat Reference Point.

3.7.3 Low Back Compression

The first data bar graph shows the current 3D Low Back Compression value. The vertical black line indicates the calculated value which is also printed to the right of the bar. The green region depicts an acceptable value and the red is unacceptable. The limit value between the green and yellow regions is the NIOSH compression limit and the limit between the yellow and red regions is two times this limit. See the Analysis Summary Report (Section 11.2).

3.7.4 Strength Percent Capable

The Strength Percent Capable box lists a summary of the strength analysis for the major joints strengths. The vertical black line indicates the calculated value which is also printed to the right of the bar. The green region depicts an acceptable strength requirement value while the red depicts an unacceptable strength requirement. Note that when there is a left and right joint or multiple strengths for a joint, the most limiting value is displayed. The default limit value between the green and yellow regions is the NIOSH action limit value and the default limit between the yellow and red regions is the NIOSH upper limit. See the Analysis Summary Report (Section 11.2). Note that the limit values can be set by the user.

Question marks will appear adjacent to the leg strength values when balance is unacceptable. These strength values are not valid because there is no solution to support the body and the loads on the legs and forces and moments of the leg joints are not valid. See Section 11.6.

3.7.5 Percent Maximum Voluntary Contraction (%MVC)

The Strength Percent Capable box can be changed to display the Percent Maximum Voluntary Contraction (%MVC) by selecting the button near the bottom of the bar graphs (Figure 3.16). This data is listed in the Localized Fatigue Report. The %MVC is the current required strength divided by the strength of the population (males or females as appropriate). In the Localized Fatigue Report the strength of the population can be selected as the 5th, 25th, or 50th percentile strength. The vertical black line indicates the calculated value which is also printed to the right of the bar. If the duty cycle for the task has been entered and calculated then the acceptable %MVC for that duty cycle is shown in green. %MVC above the acceptableis shown in red for the upper extremity illustrating an unacceptable %MVC. For the other strengths %MVC above the limit is shown as yellow because the ACGIH standard may not apply to joints other than the upper extremity. No limits will be displayed if the task duty cycle has not been entered by the user. See the Localized Fatigue Analysis on the right side of the status window and Section 3.7.8. Note that when there is a left and right joint or multiple strengths for a joint, the most limiting value is displayed.

Figure 3.16: Percent of Maximum Voluntary

3.7.6 Balance Analysis

Near the middle of the Summary Window is a graphical representation of the avatar's Basis of Support and Center of *Pressure*. The posture is in balance if the center, the red dot, is within the marked green area. See the Balance Report (Section 11.8). Below the graphic is a verbal indication of the balance condition.

3.7.7 Coefficient of Friction

Below the balance information is listed the calculated minimum foot-floor Coefficient of Friction. This value is only displayed when the eternal forces on the body include horizontal components and when the body is in balance. See Section 11.2.5.

3.7.8 Localized Fatigue

On the right side of the Status Window are summary results for the localized fatigue analysis (Figure 3.17). The user must enter Exertion Time data near the bottom and press the calculate button for results to appear. If changing the input data, then just press the enter key.

The analysis is based on the ACGIH TLV guidelines, ACGIH (2016) for localized fatigue of the upper extremity. See the Localized Fatigue Report (Section 11.3) for more information. The ACGIH sets 50% of the time to exhaustion curves from Frey-Law and Avin (2010) for the maximum static exertion duration limits which are also displayed.

The guidelines specify a maximum duty cycle time in percent for the exertion as well as the maximum static duration of the exertion. If the exertion being analyzed is less than 95% of the limit, then it will appear in a green box. If the exertion is between 95 and 100%, then it will appear in a yellow box. If the exertion is over 100% of the limit, then it will appear in a red box. Note that the "yellow zone" implementation is not part of the ACGIH standard.

The static exertion duration time should also not exceed 20 minutes (1200 seconds).

-Localized Fatigue (25%tile Strength)-

Wrist

Elbow

Wrist

Elbow

Maximum Exertion Duty Cycle %1

18

- 39 -

Maximum Static Duration(s)

109

Shoulder 12

?

The maximum duty cycle and static duration depend upon the percent of strength of the effort (100*effort/maximum strength). The maximum strength in the denominator can be the 50th percentile strength (average strength of population), 25th percentile strength (somewhat weak population), or 5th percentile strength (weak population). The chosen percentile of strength appears in the title bar of the fatigue section of the status window. See the Localized Fatigue Report (Section 11.3) where the strength percentile can be selected and the intermediate calculations can be checked.

Note, when performing this analysis for localized fatigue one should enter the average hand loads as opposed to the maximum hand loads. Maximum hand loads are normally used for strength or back compression analyses.

3.8 ANIMATION FRAME CONTROL BAR

The Animation Frame Control Bar (Figure 3.18) appears near the bottom of the screen by default and permits multiple postures to be entered and analyzed using 3DSSPP. It is actually a widow and can be positioned in any arrangement with the other screen windows. For more information on use of the Animation Frame Control Bar see Chapter 10.

3.9 STATUS BAR

The Status Bar is at the very bottom of the program window. It contains help statement for each of the menu items and may be useful for beginners. The Status Bar can be turned on or off, see Section 7.5.

3.10 REPORT WINDOWS

Report windows can be displayed and printed by selecting a specific report from the Reports Menu, Chapter 11. Changes in units, anthropometry, load, posture or other inputs will automatically be reflected in any open report window. To close a report window easily, simply press the Escape key while the report is the active window or use the standard close command on the window's title bar.

Figure 3.18: Animation Frame Control Bar

Chapter 4: FILE MENU COMMANDS

The File Menu (Figure 4.1) contains the file management and printing options for 3DSSPP. Additional file management functions are available through Windows.

When any of the file management Dialog boxes are opened for the first time in any 3DSSPP session, the files displayed are located in the "working directory". Once a file is saved or opened in a directory other than the working directory, the directory used last becomes the default directory for the remainder of the session.

4.1 NEW

Selecting *File* | *New* resets all task parameters to their default values (Section 4.5) and changes the file name in the main title bar to "UNTITLED". If the current file was not previously saved, then a Dialog box appears asking if the current file should be saved; if the file is not saved, any changes to that file since its last save are lost. Choose **NO** to continue or **YES** to invoke the File Save As Dialog and save changes.

35 Univ. of Michigan's 3DSSPP 7.0.7 beta - Untitled

Figure 4.1: File Menu

4.2 OPEN

To work with previously defined task parameters (posture, loads, etc.) saved in 3DSSPP <u>Version 6.0.6</u> choose *File* | *Open*. Select the desired file and 3DSSPP will then restore the program to the task settings in force at the time the file was last saved and will add default values for the features new to Version 7. Files older than Version 6.0.3 are not supported.

4.3 SAVE

Choosing *File* | *Save* will save the current task settings to the file name under which the file was last saved. If the task parameters have never been saved, choosing *File* | *Save* opens the same Dialog box used by *File* | *Save As*.

4.4 SAVE AS

Choosing *File* | *Save As* will allow the current task settings to be saved under a new file name. Simply enter the desired file name. It will be given the extension of .tsk for "task" file. If the file name already exists, a Dialog box appears asking if the existing file is to be replaced with the new file. Choose the appropriate response. If **NO**, the previous Dialog box is reopened to allow a new file name to be entered. If **YES**, the existing file is overwritten.

4.5 SET STARTUP TASK TO CURRENT

3DSSPP has the ability to save a set of input and view parameters as the "Startup Task." Selecting this option will cause 3DSSPP to save all current parameters (including joint angles, colors, window positions, reports open, hand loads, etc.) In a startup task file. This file will be opened automatically whenever 3DSSPP loads. Use this option to create a default workspace with commonly used parameters.

For example, if the you wish to always work with a different colored background or to start with a certain posture, then just create a new task and click "Set Startup Task to Current."

4.6 RESET STARTUP TASK

Use this option to restore the startup task to the factory defaults— the same startup parameters that come with a new install of 3DSSPP.

4.7 PRINT PREVIEW

Selecting *File* | *Print Preview* opens the Windows Print Preview display (Figure 4.2). Print Preview displays the contents of the currently active window as it would be printed were the *File* | *Print* option selected. The following options are relevant to 3DSSPP:

- **Print**: Prints the displayed window.
- Zoom in/Zoom out: Three levels of magnification are possible: 25%, 50%, and 100%. 25% allows the entire page to be seen while 100% allows any text to be clearly read. Zooming in increases the magnification while zooming out decreases the magnification.
- *Close*: This option exits the Print Preview screen and returns to the prior view.

30 Status - Untitle	d Task	
Print Clos	e Zoom <u>I</u> n	Zoom <u>O</u> ut

Figure 4.2: Print Preview display

4.8 PRINT SETUP

Selecting *File* | *Print Setup* displays the Windows Dialog box. It will vary depending upon the version of windows. It will allow printer selection as well as various printer options to be set. Windows also allows a print to a pdf file.

4.9 PRINT ACTIVE WINDOW

Five printing options are possible in 3DSSPP: Printing analysis screens and individual windows using the *Print Active Window* command, printing a series of reports using the *Print Reports* command, generating custom reports using the *Copy-toclipboard* commands and a word processing program, printing the Windows desktop, or printing the 3DSSPP main program window. The first option will be discussed here. Instructions for printing by copying to the clipboard is found in Section 11.15. Printing by copying to the clipboard is found in Sections 4.10 and 4.11. In each case, printing is handled through Windows, which does not support printing more than one window at a time. Please consult the Windows documentation for additional details on these options.

To print a specific view or report window make sure it is the active window (the window with the highlighted title bar). The selected window can be verified using the *File* | *Print Preview* command. To print the window choose *File* | *Print Active Window*.

4.10 PRINT APPLICATION

Selecting *File* | *Print Application* prints the 3DSSPP main program window (Figure 3.1) as displayed at the time of selection. Printing begins without any further user input, relying instead on the default print settings. The process may be interrupted by clicking on **CANCEL** in the print status box that appears onscreen.

4.11 PRINT DESKTOP

Selecting *File* | *Print Desktop* prints the contents of the screen at the time of selection using the default print settings. The process may be interrupted by clicking on **CANCEL** in the print status box that appears onscreen.

4.12 COPY ACTIVE WINDOW

Selecting *File* | *Copy Active Window* will place a picture of the selected window to the Windows clipboard. Once copied, the picture can be pasted into drawing and publishing applications.

4.13 COPY APPLICATION

Selecting *File* | *Copy Application* will place a picture of the 3DSSPP program window on the Windows clipboard. Once copied, the picture can be pasted into drawing and publishing applications.

4.14 COPY DESKTOP

Selecting this menu option will copy a picture of the entire screen (including visible programs other than 3DSSPP) to the Windows clipboard. Once copied, the picture can be pasted into drawing and publishing applications.

4.15 PRINTING USING THE WINDOWS CLIPBOARD

In this printing method, the Windows Clipboard is used as a translator between 3DSSPP and another Windows application, typically a word processor. After the 3DSSPP views are arranged (tiled) in the desired format, the program window is copied to the clipboard by choosing *File* | *Copy Application* or *File* | *Copy Desktop*. Next, the operation is switched to the other Windows application and the Clipboard contents are pasted into the working area. Since the pasted 3DSSPP layout is treated as a graphic image, it can be manipulated within the other application as necessary to create a custom report. Note that only one display can be copied to the clipboard at one time.

Figure 4.3: Sample report layout as printed through the Windows clipboard and a word processor

For example, to copy the five view windows and the command bars into a Windows-based word processing program (Figure 4.3):

- 1. Arrange the windows as desired by clicking and dragging the borders to shrink each window and then by clicking and dragging on the title bars.
- 2. Choose: File | Copy Application.
- 3. Switch to the word processing application; if not already running, load the word processing application with an appropriate document.
- 4. Position the cursor in the word processor at the desired location and paste the Clipboard contents into the document.

To copy an individual window including reports to the word processor,

- 1. Select the desired window or select a currently displayed report.
- 2. Choose: File | Copy Active Window.
- 3. Switch to the word processing application; if not already running, load word processing application with an appropriate document.
- 4. Position the cursor in the word processor at the desired location and paste the Clipboard contents into the document.

Once the desired 3DSSPP data is pasted into the word processor, comments or a report body can be added and the entire report package printed at one time through the word processing application.

4.16 EXIT

Selecting *File* | *Exit* will end the program. If the current task parameters have been changed since the last save, a Dialog box will appear asking if changes to the file should be saved. Choose the ap-propriate response: if **YES**, the file is saved (if the task parameters have never been saved, the File Save As Dialog box will appear); if **NO**, the pro-gram terminates and the recent changes to the file are lost; and if **CANCEL**, the program continues running with the file currently opened.

4.17 PRINTING AND COPYING FROM POPUP DIALOGS

Printing and copying commands can be accessed by RIGHT-CLICKING the Title Bars of windows, reports, bars, and even input dialogs (Figure 4.4).

	Print Window Print Preview Print Setup Copy Windov	v		
Description Company: Ur Task: Unitle Gender: Male Comment:	trength Capab Iknown Compan d Task a, Percentile: 501	iliti y, 4 h -	Print Wind Print Previo Print Setup Copy Wind Left	ow ew , low
Anthropomet Create Gender (• Mal	e x	Move Close Print W	indow	Alt+F4
- Height and	d Weight			

Figure 4.4: Title Bar Popup Menus

Chapter 5: EDIT MENU COMMANDS

The Edit Menu contains common editing related commands which are applicable to posture manipulation and/or animation frame manipulation. The Undo and Redo feature is also available in other control dialogs

5.1 UNDO/REDO POSTURE CHANGES

Selecting **Undo Posture** (Figure 5.1) returns the posture to the previous posture if it exists. The user can undo multiple posture changes and **Undo** will work for all posture changes, whether made by direct manipulation, posture prediction, or directly through the Body Segment Angles Dialog. The Undo command is also available in the context menus and in the Body Segment Angles Dialog.

Selecting *Redo Posture* replaces the current posture with the most recently undone posture. It also allows multiple levels and is only valid if the undo command has been used. *Redo* will work for all posture changes, whether made by direct manipulation, posture prediction, or directly through the Body Segment Angles Dialog. The Redo command is also available in the context menus and in the Body Segment Angles Dialog.

36 U	niv. of	f Michigan's 3	BDSSPP	7.0.7 beta - l	Untitlec
File	Edit	Task-Input	View	Stick-Views	Avata
36		Undo Posture Redo Posture	e Chang e Chang	ge Ctrl+Z ge Ctrl+Y	
		Cut Frame Ctrl+X Copy Frame Ctrl+C			
	_	Paste Frame		Ctrl+V	<u></u>

Figure 5.1: Edit Menu—Posture

5.2 UNDO/REDO FRAMES

Selecting **Undo Frame Add** (Figure 5.2) removes the most recently added frame and the **Redo Frame Add** will add the frame back. These commands are applicable to the animation frames in the 3D Dynamic Mode and can also be accessed from the Animation Frame Control Bar context menu.

Note that all Undo and Redo commands have a total queue of ten. Settings older than ten are discarded.

👪 Univ. of Michigan's 3DSSPP 7.0.7 beta - Untitled

File	9	Edit	Task-Input	View	Stick-Views	A۱	/atar
36	9		Undo Frame Redo Frame	Add Remov	Ctrl+Z e Ctrl+Y		
			Cut Frame Copy Frame		Ctrl+X Ctrl+C		
		_	Paste Frame		Ctrl+V		

Figure 5.2: Edit Menu—Frames

5.3 FRAME CUT, COPY, PASTE

The *Frame Cut, Copy*, and *Paste* commands are applicable to the animation frames. They can also be accessed from the Animation Frame Bar context menu, see Chapter 10.

Chapter 6: TASK INPUT MENU COMMANDS

The Task Input Menu (Figure 6.1) contains the Dialog boxes for specifying a description of the analysis task, the main program controls, and the three major inputs required to use 3DSSPP: the worker anthropometry, posture, and load exertions for the task to be analyzed. Note the keyboard commands that can be used to select some of the commands.

There are three methods by which postures can be entered into 3DSSPP: the *body segment angle method*, the *posture prediction method*, and the *direct manipulation method*. The *body segment angle method* requires the analyst to specify about 30 angles for the body using the **Task-Input | Body Segment** Angle command. The *posture prediction method* requires the user to define the location of the hands in three dimensional space using the Posture Prediction Dialog. 3DSSPP then predicts a possible posture based on inverse kinematics and a posture preference algorithm.

For either method, the user may adjust the posture further using the *direct manipulation method* by selecting a joint segment and indicating a new joint position by dragging to the location. Or, if desired, direct manipulation may be used initially to explore various joint positions without using either of the other posture entry methods.

ask-Input	View	Stick-Views	Avatar-View	Animation
Descri	ption			
Set Me	etric Un	its		
Gravity	/			
Suppo	rt Selec	tion		
Anthro	pomet	ry		Ctrl+A
Hand I	Loads			Ctrl+H
Extern	al Appl	ied Forces an	d Moments	Ctrl+J
Body S	Segmen	t Angles		Ctrl+B
Pre-Se	t Postur	es		
Posture	e Predio	tion		
Lock T	runk			
Hand	Grasp A	ngles		
Run Ba	atch File			

Figure 6.1: Task-Input Menu

6.1 DESCRIPTION

Selecting **Task-Input | Description** allows the user to specify the name and other information relative to the task being analyzed and include additional comments about the task (Figure 6.2). The Task Name appears in the program title bar and the Frame Name appears in the title bar of the Status Window. The Frame Name can be applied to one frame or a range of frames. In addition all of the information and part of the comment field appears in the analysis report headers.

6.2 SET METRIC / ENGLISH UNITS

This command toggles the units used for data entry and analysis results between the Metric and English systems. The current units are switched to the units specified in the displayed command. The default is English units. Any open windows will be updated immediately.

Task Description
Task Name
Untitled Task
This is a frame name.
Analyst Name
Unknown
Company Name
Unknown Company
Comments
OK Cancel

Figure 6.2: Task Description Dialog

٦

6.3 GRAVITY

The *Task-Input* | *Gravity* item will open a dialog box that allows the user to alter the gravity factor that 3DSSPP uses in its calculations (Figure 6.3). Several suggested alternative gravity values are provided. Note that changing the gravity value will not affect external forces on the body—only the force caused by the weight of the body's links.

Acceleration of Gravity	ΟΚ
32.185	
ft/s²	Apply
Earth Gravity 👻	Cancel

6.4 SUPPORT SELECTION

The *Task-Input* | *Support Selection* command opens the Support Selection Dialog, which controls standing and seated support parameters (Figure 6.4).

Use this Dialog to choose either a standing analysis or a seated analysis. In the standing mode the program automatically estimates support forces for the feet in order to balance the bodyweight and other forces on the body. In the seated mode the program can estimate additional support forces including forces supporting the ischial tuberosities of the pelvis, the back of the upper legs above the knees, and from the backrest at the torso.

When in seated mode, the center of the measurement coordinate system defaults to the *Seat Reference Point* (SRP). The location of the center of the hips with respect to the SRP often needs to be adjusted by the user so the subject appears to be sitting normally in the seat. See Section 6.4.3.

6.4.1 Feet Support

The user can specify which foot or both are supported while standing for one frame or for a range of frames. To select a range of frames, select the first frame and then use the SHIFT key while selecting the last frame. If both feet are chosen then the program will automatically determine the load being supported by each leg. Otherwise the full load is placed in the chosen leg.

The case of "No foot support" is only valid when the subject is seated. In this case the feet are assumed to be "dangling" from the seat.

Support Selection			×
Support Selection	 Feet Support ● Both feet supported ○ It ○ No foot support ○ F 	eft foot supported	OK Apply
Seated Support Mode ☐ Front seat pan support ✓ Seat has back rest Back rest center height above seat: 10 in Manual foot support	Seating Parameters Adjust Pelvic Location in Seat (Hip Lo 4.13 4.22 Additional Pelvic Forward Rotation: -15 (degrees)	ocation) in Horizontal (Y) in Vertical (Z) 0 standing -15 sitting -25 wheelchair	Cancel

6.4.2 Seated Support Mode

When seated mode is selected, the user can choose whether to include support from a back rest and, if the feet are not supported, whether to include front seat pan support (Figure 6.5 second image). A third option allows the user to manually adjust the support at the feet while seated. This might be useful when a known force is required at the ball of the foot like pressing a pedal.

6.4.2.1 Front Seat Pan Support

If the feet are not supported and the front seat pan support is selected, then support forces are applied to the back of the upper legs from the front edge of the seat pan. This might be the case of an office type chair or a high table chair when there is no foot rest. The length of the seat pan is set by population factors which are a fraction of stature.

If the feet are not supported and the front seat pan support is not selected, then neither the feet nor the backs of the upper legs are supported. This might illustrate the use of a stool without a foot rest.

6.4.2.2 Back Rest Support

If the back rest is chosen, then the program will estimate the support applied to the torso by the back rest. The back rest will only provide support if there is a negative X hip center resultant moment. The magnitude of the back rest force is set such that the X-hip center resultant moment is zero.

The height of the back rest can be adjusted as low as 7.5 inches from the *Seat Reference Point* (SRP). The tilt of the seat back is determined by the extension of the torso. If the torso is flexed, then the seat back is positioned as if the torso was erect and the seat back will provide no support.

6.4.2.3 Manual Adjustment of Foot Support

In this mode of support the user must enter ball and heel foot support forces to balance the seated worker. Most of the weight of the worker should be supported by the seat through the ischial tuberosities which the 3DSSPP will calculate and apply. Balance is attained when the Residual Support Moments given on the Balance Report are zero or near zero. The Residual Support Moments are the remaining moments at the center of the hips that are not currently being countered by support forces. If the X moment is negative, then the body if falling forward and more upward foot forces are required. If it is positive, then the body is falling backward and either there is too much upward foot force or a back rest is needed. Enter ball and heel foot support forces using the External Applied Forces and Moments Command, see Section 6.7 and 6.7.4.

Figure 6.5: Seated Modes

6.4.2.4 Seated Lateral Forces and Twisting Moments

Lateral forces appearing in the body at the pelvis from the upper body are supported by lateral forces from the seat pan to the ischial tuberosities. Twisting moments about the vertical axis (Z) are supported by a force couple (pair of opposite forces) applied by the seat pan to the ischial tuberosities. These are calculated automatically.

6.4.3 Seating Parameters

Here the user can change the positioning of the pelvis in the seat using the slider bars to set the location of the Seat Reference Point with respect to the center of the hips. The user can also set the pelvic rotation. The program estimates the pelvic rotation assuming a standing posture. Additional rotation as when seated can be added. Suggested "normal" values for the seated case are displayed. The default values are 0 degrees for standing and – 15 degrees for seated.

6.4.4 Showing Seat Support Forces in the Stick-View Windows

The *Stick-View* | *Show Support Forces* command is used to toggle the display of the support forces in the stick-view windows. See Section 8.2. The possible support forces include from the seat pan into the ischial tuberosities of the pelvis, at the forward edge of the seat pan at the back of knees, from the floor info the feet, and from the backrest into the torso (Figure 6.6). The seat support selection choices control what support forces are applied.

Figure 6.6: Possible Seat Support Forces

6.5 ANTHROPOMETRY

Selecting **Task-Input | Anthropometry** opens the Anthropometry Dialog (Figure 6.7). Use this Dialog to enter the desired anthropometry for the analysis by entering height and body weight. Body segments (or links) will be given lengths, masses, and centers of mass based on these values. The link anthropometries can be adjusted if necessary for special analyses, see Section 6.5.4. The anthropometry values apply to all frames of the analysis.

Recall that the 3DSSPP anthropometry and model are for working age adults. See Section 6.3.5.1 for the source of the population height and weight data.

Anthropometry	×
Create Anthropometry Gender O Male I Female	Avatar Type C Fixed Shape ⓒ Modeled Shape
Height and Weight 95th Percentile 50th Percentile Fercentile Entry Percentile 75 % Apply Percentile Data Entry Height 63.1 in Weight 170.6 lb Apply Height & Body Weight	Modeled Shape Factors Age 40 years Seated/Standing Height Ratio
Body Mass Distribution BMI 30.12 Fixed Distribution Modeled Distribution	Modify Population Factors OK APPLY CANCEL

Figure 6.7: Anthropometry Dialog
6.5.1 Gender

The gender entry chooses between male and female anthropometry factors and strength data.

6.5.2 Avatar Type

There are two avatar types available within the 3DSSPP. The avatar type can be selected at the top right of the Anthropometry Dialog. It can also be selected under the Avatar-View menu using the Human Figure dialog.

The *Fixed Shape* avatar (Figure 6.8) is the one which has been available for many years. Its overall size is scaled according to the entered height and weight, but its shape is not adjusted and its body segments are set to a fixed set of proportions of height, body mass, and center of mass. The proportions can be edited by the user to accommodate a non-US population, see Section 6.5.8.

The *Modeled Shape* avatar (Figure 6.9) is different. Its shape, which is based on real humans, changes depending upon gender, height, body mass index (BMI), age, and the seated to standing height ratio. The model was developed by Matt Reed at the University of Michigan, see Reed and Park (2017) and Reed, et al. (2014).

6.5.2.1 Modeled Shape and Mass Factors

The additional factors required by the modeled shape avatar are *age* and the *seated to standing height ratio*. The latter is adjusted using a sliding bar control, see Figure 6.7.

These factors also apply to the modeled mass and center of mass distributions when the modeled mass distribution mode is selected, see Section 6.5.3.3.

6.5.3 Height and Weight

This entry selects the method to be used to set the anthropometry: either *95th, 50th, 5th* population percentile, *percentile entry* to enter a specific percentile of the population, or *data entry* to input a specific height and weight. The percentile methods use the means and standard deviations of the 3DSSPP default population to estimate the height and weight to be used. The height and weight is shown in the boxes under the data entry mode.

If the method to be used is *percentile entry*, move the cursor to the percentile input box and enter the desired percentile. The estimated height and weight is shown in the boxes under the data entry mode.

Figure 6.8: Fixed Shape Avatar, 50 percentile male and female

Figure 6.9: Modeled Shape Avatar, 50 percentile male and female

If the method to be used is *data entry*, move the cursor to the input boxes and directly enter the desired height and weight.

The magnitude values can also be altered using the **MOUSE SCROLL WHEEL**.

6.5.3.1 Default Population Values

The default population heights and weights are taken from the 2015-2016 NHANES study (http:// www.cdc.gov/nchs/ nhanes.htm) of US civilians ages 18 through 69. These can be modified to represent other nationalities or groups, see Section 6.5.8.

6.5.3.2 Body Mass Index

The body mass index (BMI), which is a measure of obesity, is displayed near the bottom left of the anthropometry dialog. It is calculated from height and body weight. BMI = BW in kg / (Body Height in m)**2.

6.5.3.3 Fixed versus Modeled Mass Distribution and Center of Mass Locations

The 3DSSPP includes an option to choose either *Fixed Distribution* or *Modeled Distribution* to estimate the body segment masses and center of masses. The user can choose the option at the lower left corner of the Anthropometry Dialog.

The *Fixed Distribution* uses fixed fractions of total body mass to estimate the mass of each body segment and are discussed in Section 6.5.8. Similar fractions of segment lengths are used to estimate the locations of the center of mass of each body segment. The *Modeled Distribution* uses as set of regression equations to estimate the body segment masses and center of masses. The parameters for the regression equations include gender, body mass index (BMI), age, and the seated to standing height ratio, see Merrill et al., 2019.

6.5.3.4 Extreme Height and Weight Warning

The body segment length estimates for extreme heights, very tall or very short, may not be representative of real persons and may lead to erroneous biomechanical results.

Likewise the use of the *Fixed Distribution* mode for estimates of segment masses and center of masses for extreme bmis may not be representative of real persons and may lead to erroneous biomechanical results. It would be better to use the *Modeled Distribution* mode for workers with high bmis.

Also note that the anthropometry in 3DSSPP may not represent extremely short workers.

In all of these cases the feature to edit current anthropometry values to fit a specific individual may be useful. See Section 6.5.4.

6.5.4 Show/Edit Current Anthropometry Values

The Show Current Anthropometry Values button opens a larger Anthropometry dialog (Figure 6.10) that lists the current anthropometry values. Note that there are Left and Right side values for the upper and lower extremities, but only one set is displayed at a time (Figure 6.11). Use the Change to Right or Change to Left buttons to view and edit the corresponding values.

The displayed values can be individually edited for a specific dimensioned person; creating a unique dimensioned person. The user can modify the link lengths, center of mass, and mass of the body links. Note that changing these values does not update the currently entered overall height or body weight.

The default values depend upon the chosen gender, body height, and body weight in the Create Anthropometry box. If the Create Anthropometry factors are changed, then the current anthropometry analysis values on the right will be reset to the appropriate default values. To alter the basic values after the gender, height, and weight have been set, simply enter the specific values desired. These values will be applied to the analysis and be reported in the Anthropometry Report.

Note that modifications of the individual segment anthropometry values is not depicted in the modeled shape avatar but may be depicted in the fixed shape avatar.

Current Anthropometry					×
Create Anthropometry		LEFT SIDE			
Gender O Male O Female	Avatar Type • Fixed Shape • Modeled Shape			View Righ	nt Side Values
	· · · · · · · · · · · · · · · · · · ·	Link	Length (in)	CG-to-Proximal End Distance (in)	Weight (lb)
C 95th Percentile	Age 40 years	Hand Grip Center:	2.8	21	1
 50th Percentile 5th Percentile 	Seated/Standing Height Ratio	Lower Arm:	9.2	3.9	2.5
C Percentile Entry Percentile 3 %	Apply Avatar	Upper Arm: Upper Leg: Lower Leg:	16	6	23.1
Apply Percentile	Miscellaneous	Foot:	9.5	3.8	2.3
Data Entry	Enable Shoes	Head and Trunk			
Height 63.1 in	Shoe Height 1.00 in	Link	Length (in)	CG-to-Proximal End Distance (in)	Weight (lb)
Weight 170.6 Ib	Maintain Hand Positions	Head Radius:	3.4		
Apply Height & Body		Head, Base to Tragion:	1.2	2.2	9.9
Weight	Hide Current Anthropometry Values	Upper Neck:	2.5	1.3	1.8
Body Mass Distribution	Hide Cullent Anthiopometry Values	Lower Neck:	2.5	1.3	1.8
BMI 30.12	Modify Population Factors	Torso, L5 to C7T1:	15.9	10.7	45.8
Fixed Distribution Modeled Distribution	OK APPLY CANCEL	Pelvis, Hip to L5:	3.5	1.7	28.8
		* Population:	Production 7.0.5		

Figure 6.10: Anthropometry dialog showing current anthropometry analysis values to be use

- RIGHT SIDE		C	hange to Left
Link	Length (in)	CG-to-Proximal End Distance (in)	Weight (lb)
Hand Grip Center:	3.4		
Hand With Fingers:	7.4	2.7	1.2
Lower Arm:	10.3	4.3	3.3
Upper Arm:	12.8	6.8	5.5
Upper Leg:	17.6	6.9	24.5
Lower Leg:	15.6	6.4	8.2
Foot Length:	10.6	4.7	2.7

Figure 6.11: Right side extremity values with Change to Left button

6.5.5 Shoes

The *Enable Shoes* check box and *Shoe Height* entry box in the miscellaneous section of the Anthropometry Dialogs control the addition of shoes and sets the shoe height. The shoe height is included in all location measurements and appropriate calculations. The default height is set at 25 mm, Pheasant 2001. A crude depiction of shoes are added to the Avatar-View.

6.5.6 Maintain Hand Positions

If the *Maintain Hand Positions* box in the miscellaneous section of the Anthropometry Dialogs is checked when the anthropometry is changed, then the hand locations of the former posture will be unchanged in the new posture. Note that for the hands to be in the same location, the posture must change if the body segment lengths have changed. 3DSSPP automatically performs a posture prediction after the anthropometry is changed.

6.5.7 Modify Population Factors

The **MODIFY POPULATIONS FACTORS** button is used to select an alternate set of anthropometry values including: Stature, body weight, link lengths, link weights, link centers of gravity, and strength. The Population Dialog is shown in Figure 6.12.

Note that the Population used in an analysis will be saved with the task data when an analysis is saved. The current program Population will be set to this Population when the saved task is recalled. Use the **RESET TO DEFAULT** button to reset the current population factors back to the program default values.

6.5.7.1 Open Population File

The **OPEN POPULATION FILE** button is used to select a population file using the Windows Open File Dialog. The anthropometric values contained in the file are used in place of the program default values.

6.5.7.2 Reset to Default Population

The **RESET TO DEFAULT** button reinstates the program default anthropometric values.

6.5.7.3 Edit Population

The **EDIT POPULATION FACTORS** button is used to create new population files or check the population factors. A password is required to use this command and it is not recommended for normal program users (Figure 6.13). The current password is "password7". The population factors are critical to the accuracy of the biomechanical analyses. Most users should ignore the next section.

Figure 6.12: Population Factors Dialog

6.5.8 Population Anthropometric Factors

The 3DSSPP population anthropometric factors are set in the Population Editor Dialogs. These Dialogs are used to create new population factor files which can be used in place of the default population factors in 3DSSPP. The program default values are for a US industrial population as determined by the University of Michigan Center For Ergonomics. sources included: Dempster 1955, Drillis and Contini 1966, Chaffin 1972, Tilley 1993, De Leva 1996, Pheasant 2001, Durkin and Dowling 2003, and others. The user should consult the text *Occupational Biomechanics*, Chaffin 2006, for information about population anthropometric factors.

The main Dialog (Figure 6.14) is used to enter the Link Length, Link Mass, and Link Center of Mass values. The link lengths and link masses are fractions to be multiplied by the stature or body weight. The centers of mass are the fraction of the link length from the proximal to distal joint. These are for the fixed mode of determining body segment parameters. The mass and center of mass parameters also have a modeled mode of estimating these factors; see Section 6.5.3.3.

Population Editor - Password				
Factors Editor Access Code OK				
Cancel				

Figure 6.13: Population Edit Access Dialog

6.5.8.1 Gender

There are two sets of anthropometric factors; one for male and one for females. The gender buttons, at the upper left, are used to view and allow the entry of factors for each and all sets of values.

6.5.8.2 File Manipulation

The **Factors Name** entry box and buttons near the top of the Dialog can be used to enter a name for a new set of factors and to save the factors in a file for later use. The name of the factors is displayed on appropriate 3DSSPP output screens and reports.

Population Editor - Male Factors		×
Switch Factors Female Male Male Lengths 0.151 5 Forearm 0.1877 Upper Arm 0.0572 Tragion to Nasion 0.0203 Head Base to Tragion 0.0203 Head Base to Tragion 0.04 Upper Neck 0.04 Lower Neck 0.063 C7T1 to SCJ 0.028 Extra Torso 0.122 SCJ To Shoulder 0.2517 L5S1 to C7T1 0.0542 Hip to L5S1	Eactors Name: Production 7.0.5 Open Save Save Beset to Default Factors Masses (Fixed Avatar) 0.0173 Forearm 0.0287 Upper Arm 0.058 Head 0.0105 Upper Neck 0.3385 Torso 0.1104 Pelvis 0.0226 Lower Leg	□K Apply □ancel □ <tr< td=""></tr<>
0.0737 IT Breadth 0.0803 L5S1 to IT 0.2574 Upper Leg 0.2287 Lower Leg	Range of Motion Edit ROM Limits Edit Strength Factors	Angles
Edit <u>F</u> eet Edit Hands Edit <u>T</u> orso Muscles	Predicted Value Actual Value Standard Deviation	15.4 Tragion Nasion 74 Head Resting

Figure 6.14: Main Population Edit Dialog

6.5.8.3 Feet and Hand Dimensions

The **FEET** and **HANDS** buttons in the Lengths box open Dialogs for entering various feet and hand dimension (Figures 6.15 and 6.16). Values depend upon whether male or female are selected in the main dialog.

6.5.8.4 Strength Means

The strength means box contains three buttons which open Dialogs for entry of predicted joint strength values, actual joint strength values, and standard deviations of the joint strengths. There are separate values for males and females as directed by the gender selection buttons on the main editor Dialog.

Population Editor - Feet - Male Factors				
Foot Dimensions	3			
0.0415	Floor to Ankle			
0.1544	Heel to Toe			
0.1144	Heel to Ball			
0.058	Foot Breadth			
0.0405	Heel Breadth			
0.0289	Heel to Ankle			
Toe Dimensions		7		
0.123	Greater Toe Tip to Ankle			
0.0182	Greater Toe - Lateral			
0.0687	Fifth Metatarsal to Ankle			
0.0275	Fifth Metatarsal - Lateral			
0.0142	Mass	_		
0.4415 Center of Mass(Horizontal				
0.4375	Center of Mass(Vertical)			
ОК	Cancel			

Figure 6.15: Dialog for feet dimensions

%						×
-Hand Dimensions	I <u></u>					ок
0.05	Wrist to Grip Center	0.045468	Left Digit 4 Carpal Metacarpal	0.015444	Right Digit 2 Middle Phalanx	Cancel
0.108	Wrist to Finger Tip	0.026352	Left Digit 4 Proximal Phalanx	0.010476	Right Digit 2 Distal Phalanx	Cancer
0.012744	Left Digit 1 Carpal	0.01782	Left Digit 4 Middle Phalanx	0.048168	Right Digit 3 Carpal Metacarpal	
0.027108	Left Digit 1 Metacarpal	0.011556	Left Digit 4 Distal Phalanx	0.028728	Right Digit 3 Proximal Phalanx	
0.021168	Left Digit 1 Proximal Phalanx	0.044712	Left Digit 5 Carpal Metacarpal	0.01836	Right Digit 3 Middle Phalanx	
0.017064	Left Digit 1 Distal Phalanx	0.022032	Left Digit 5 Proximal Phalanx	0.011664	Right Digit 3 Distal Phalanx	
0.050004	Left Digit 2 Carpal Metacarpal	0.012636	Left Digit 5 Middle Phalanx	0.045468	Right Digit 4 Carpal Metacarpal	
0.02646	Left Digit 2 Proximal Phalanx	0.010044	Left Digit 5 Distal Phalanx	0.026352	Right Digit 4 Proximal Phalanx	
0.015444	Left Digit 2 Middle Phalanx	0.012744	Right Digit 1 Carpal	0.01782	Right Digit 4 Middle Phalanx	
0.010476	Left Digit 2 Distal Phalanx	0.027108	Right Digit 1 Metacarpal	0.011556	Right Digit 4 Distal Phalanx	
0.048168	Left Digit 3 Carpal Metacarpal	0.021168	Right Digit 1 Proximal Phalanx	0.044712	Right Digit 5 Carpal Metacarpal	
0.028728	Left Digit 3 Proximal Phalanx	0.017064	Right Digit 1 Distal Phalanx	0.022032	Right Digit 5 Proximal Phalanx	
0.01836	Left Digit 3 Middle Phalanx	0.050004	Right Digit 2 Carpal Metacarpal	0.012636	Right Digit 5 Middle Phalanx	
0.011664	Left Digit 3 Distal Phalanx	0.02646	Right Digit 2 Proximal Phalanx	0.010044	Right Digit 5 Distal Phalanx	
0.0062	Mass	0.3624	Center of Mass			

Figure 6.16: Dialog for hand dimensions

6.5.8.4.1 Predicted Value

The *Predicted Value* dialog (Figure 6.17) contains strength values from the strength prediction equations evaluated at the posture used to obtain the actual male and actual female population strength values. These values must be hand calculated and the units must be the same as the units used for the actual population strength values. Contact 3DSSPP technical support for assistance.

6.5.8.4.2 Actual Value

The *Actual Value* dialog (Figure 6.18) contains the mean strength values from the measured population. These values are divided by the predicted values to calculate a scaling factor to be applied to the mean strength prediction equations for analyses.

6.5.8.4.3 Standard Deviation

The **Standard Deviation** dialog (Figure 6.19) contains the population standard deviations measured for each strength. These assume a normal distribution and are used to calculate the percentile strengths of the population.

Population Editor - Predicted Mean - Male Factors				
Unit: N·m				
elbow flexion	45.6	trunk extension	283.1	
elbow extension	25.1	hip flexion	177.3	
humeral medial rotation	17.6	hip extension	251.9	
humeral lateral rotation	10.5	knee flexion	86.4	
shoulder abduction	28	knee extension	214.2	
shoulder adduction	15.9	ankle flexion	192.2	
shoulder rotation back	22.1	ankle extension	192.2	
shoulder rotation forward	21.8	neck bending right	1	
trunk bending right	32.9	neck bending left	1	
trunk bending left	32	neck rotation right	1	
trunk rotation right	39.2	neck rotation left	1	
trunk rotation left 39.2		neck flexion	1	
trunk flexion	104	neck extension	1	
		ОК	Cancel	

Figure 6.17: Dialog of predicted strength values for twenty strengths

Population Editor - Actual Mean - Male Factors					
Unit: N·m					
elbow flexion	77.7	trunk extension	390.7		
elbow extension	47.2	hip flexion	204.5		
humeral medial rotation	51.2	hip extension	217.7		
humeral lateral rotation	34.9	knee flexion	109		
shoulder abduction	70.3	knee extension	170.3		
shoulder adduction	69.6	ankle flexion	138.8		
shoulder rotation back	69.5	ankle extension	138.8		
shoulder rotation forward	85.4	neck bending right	23.7		
trunk bending right	152.6	neck bending left	23.7		
trunk bending left	149.8	neck rotation right	13.1		
trunk rotation right	85.6	neck rotation left 13.1			
trunk rotation left	85.6	neck flexion 23.5			
trunk flexion	lexion 197.7 neck extension 39.		39.7		
		ОК	Cancel		

Figure 6.18: Dialog of actual population strength values for twenty strengths

Population Editor - Standard Deviation - Male Factors					
Unit: N·m					
elbow flexion	19.1	trunk extensio	on 123.1		
elbow extension	9.5	hip flexio	on 55.8		
humeral medial rotation	13.1	hip extensio	on 87.4		
humeral lateral rotation	7.9	knee flexio	on 32.1		
shoulder abduction	17.3	knee extensio	on 59.6		
shoulder adduction	21.8	ankle flexio	on 45.9		
shoulder rotation back	20.3	ankle extensio	on 45.9		
shoulder rotation forward	23.3	neck bending rig	ht 5.3		
trunk bending right	33	neck bending le	eft 5.3		
trunk bending left	33.7	neck rotation rig	ht 2.9		
trunk rotation right	22.9	neck rotation left 2.9			
trunk rotation left	22.9	neck flexion 6.5			
trunk flexion	58.1	neck extension 8.5			
		ОК	Cancel		

Figure 6.19: Dialog of population strength standard deviations for twenty strengths

6.5.8.5 Body Weight and Stature

The **EDIT MEANS AND STANDARD DEVIATIONS** button opens the Dialog in Figure 6.20. These values are the current population height and body weight values used for males and females. The means and standard deviations are listed. The 3DSSPP program default values are discussed in Section 6.5.3.

Popu	Population Editor - Stature/Body Weight $\qquad \qquad \qquad$					
Male	Height (cm)	Mean 173.7	StDev 7.74			
maic	Weight (kg)	87.54	21.48			
Femal	Height (cm) le	160.4	6.97			
	Weight (kg)	K Cano	iel			

Figure 6.20: Dialog for entry of population height and body weight values

Population E	ditor - Spin	e Muscles	s - Male Factors	×
Spinal Momer	nt Arms —			
X (cm)	Y (cm)	Area (cm	2)	
-3.3	-5.9	20	L.Erector Spi.	
3.3	-5.9	19.5	R.Erector Spi.	
-4.1	8.3	6.7	L.Rectus Abdo.	
4.1	8.3	7	R.Rectus Abdo.	
-11.7	3.5	8.5	L.Internal Ob.	
11.7	3.5	7.7	R.Internal Ob.	
-13.2	3.3	10	L.External Ob.	
13.2	3.3	8.8	R.External Ob.	
-7.2	-5.4	4.3	L.Latis. Dorsi.	
7.2	-5.4	4.3	R.Latis. Dorsi.	
	ОК		Cancel	

Figure 6.21: Dialog for entry of population height and body weight values

6.5.8.6 Torso Muscle Factors

The **TORSO MUSCLES FACTORS** button opens the Dialog in Figure 6.21. These values are the current torso muscle moment arm locations with respect to the center of the body of the vertebra and the area of each muscle. There are separate values for males and females. This data is based upon CT scan data from several studies.

6.5.8.7 Posture Range of Motion Limits

The **EDIT ROM LIMITS** button opens the Dialog in Figure 6.22. These values are the current Posture range of motion limits. Alternative values can be entered.

Caution: Do not exceed the default neck range limits as the strength equations outside the current limits may produce invalid results.

P	Posture Range of Motion Limits						
	Limb Angles (degrees)						
	Wrist:	Min	Max				
	Flexion/Extension	-63	66				
	Ulnar/Radial Deviation	-21	38				
	Arm:						
	Forearm Rotation	-90	90				
	Elbow Included	15	180				
	Shoulder Vertical	0	180				
	Shoulder Horizontal	-100	180				
	Humeral Rotation	-120	120				
	Upper leg:						
	Hip Included	0	210				
	Hip Vertical	0	180				
	Hip Horizontal	-90	180				
	Femoral Rotation	-90	90				
	Lower leg:						
	Leg Rotation	-90	90				
	Knee Included	15	180				
	Ankle Included	15	180				

Figure 6.22: Posture Range of Motion Limits Dialog

6.6 HAND LOADS

The *Task-Input* | *Hand Loads* dialog is used to enter loads at the hands (Figure 6.23) for one frame or for a range of frames. To select a range of frames, select the first frame and then use the SHIFT key while selecting the last frame. Please note that, in 3DSSPP, **"hand load" refers to the load being applied TO the hand**, not the load applied by the hand. A verbal description of the action of each hand in response to the load exerted on it is displayed to confirm the correct entry. Separate force magnitudes and directions are entered for each hand. The force directions may be entered using direct manipulation similar to posture (Section 3.5). The magnitude and angle values can be altered using the INCREMENT buttons or the mouse the MOUSE SCROLL WHEEL. Click on the value to change, then click on the increment value desired (1, 5, 10, 15, 20, 25), and finally click on the "+" to increase the value in steps of the increment selected, click on the "-" to decrease the value, or use the mouse scroll wheel. The biomechanical output values will update immediately. Finally, the BOTH HANDS' MAGNITUDE check button can be used to increment or decrement the magnitude of both hands at the same time.

The Effort boxes can be used to easily enter and identify the direction of the hand forces. Nonstandard directions must be entered using the angles.

hand Loads		×
Left Applied Load ? Magnitude 10.00 lb	Right Applied Load ? Magnitude 10.00 lb	ОК
Angle (Degrees)	Angle (Degrees)	Apply
Vertical -90 Horizontal 90	Vertical -90 Horizontal 90	Zero Forces
Symmetry>	< Symmetry	
Increment (mouse wheel) Both Hands' Magnitude	C m C m 1	
Increment (mouse wheel) Both Hands' Magnitude • 1	C 20 C 25 · · · · ·	
Left Effort	C 20 C 25+	
Left Effort	C 20 C 25 · · · · ·	
Increment (mouse wheel) Both Hands' Magnitude	C 20 C 25 · · · ·	
Increment (mouse wheel) Both Hands' Magnitude	C 20 C 25 · · · · · · · · · · · · · · · · · ·	
Increment (mouse wheel) Both Hands' Magnitude I 0 5 0 10 0 15 Left Effort Description: up By Angle Entry Push Up(Lift) C Push Forward C Exert Left Push Down C Pull Back C Exert Right	C 20 C 25 · · ·	

Figure 6.23: Hand Loads Dialog

6.6.1 Horizontal Hand Force Angle

Illustrating the hand load force as a vector with its tail in the grip center of the hand and its arrow pointing in the direction of the force, the hand load horizontal angle is the angle between the X axis and the force vector when viewing the figure from overhead (i.e. When the force vector is projected onto the X-Y plane). If the vector is directed forward of a vertical plane at the hand, the angle has a range of 0 to 180 degrees. If the vector is directed behind a vertical plane at the hand, the angle certical plane at the hand, the angle has a range of 0 to -180 degrees. For both hand vectors, 0° lies along the positive X axis. Refer to Figures 6.24 and 6.25 for clarification.

Note that the horizontal angle does not have meaning when the force direction is perfectly vertical (it has no projection on to the X-Y plane other than a point) and need not be entered in this case.

6.6.2 Vertical Hand Force Angle

Assuming the hand force vector tail is in the grip center of the hand, the angle between the vector and the horizontal X-Y plane is the hand force vertical angle. If the vector is directed above the horizontal plane, the angle has a range of 0 to 90 degrees. Should the vector be directed below the horizontal plane, the angle ranges from 0 to -90 degrees. Refer to Figure 6.26 for additional clarification.

Figure 6.24: Positive horizontal hand force vector

Figure 6.25: Negative hand force vector horizontal

Figure 6.26: Vertical hand force vector angles with right horizontal angle of 0° and left horizontal angle of 180°

6.6.3 Hand Force Solver Feature

The **Hand Force Solver** feature is used to automatically increase the hand forces until a limit is reached, Figure 6.27. It increments the hand loads from the current values which must be valid given the selected solver conditions. Various options can be chosen for which hand to increment and which limits to consider.

6.6.3.1 Hand Option

This option allows the automatic hand load to be determined for just one hand or for both. If both hands is chosen then the ratio of hand force magnitude before solving will be maintained.

6.6.3.2 Condition/Limitation Option

This option determines what limits will be considered when the hand force magnitudes are incremented.

6.6.3.3 Strength Options

Which strengths to include as limits in the solve can be set in this option.

Hand Force Solver		
Option	-Strength Options	Left Applied Load
O Left Hand	Vrist	Magnitude 10.00 lb
	Elbow	
C Right Hand	L. Shoulder	
		Right Applied Load
 Both Hands 	Torso	Magnitude 10.00 b
(By Current Ratio)	10130	
	🔽 Hip	
	F	Starting hand loads must be a valid
Back Compression	Knee	solution given the solver conditions.
✓ Balance	Ankle	
Acceptable	Select All	OK Apply
C Critical		
	None	Cancel

Figure 6.27: Hand Force Solver Dialog

6.6.4 Enter Hand Loads by Components

This button opens a new dialog that allows the hand loads to be entered as force and torque components for one frame or for a range of frames (see Figure 6.28). To select a range of frames, select the first frame and then use the SHIFT while selecting the last frame. To enter either a force or a torque for either hand, just enter the component forces or component torques, and SSPP will automatically compute the total force or torque. The coordinate system is defined with the X-axis extending laterally with positive to the subjects right. The positive Yaxis extends forward and the positive Z-axis extends vertically. This forms a right-had coordinate system and the forces and moments are defined accordingly.

The magnitude values can be altered using the **MOUSE SCROLL WHEEL**.

6.6.4.1 Zero All

This button will clear all the entered hand load forces and torques.

Enter Hand For	ce and	Torque by C	component					×
- Left Hand Force	e (lb)	Torq	ue (in-lb)	Right Hand Forc	e (lb)	Torq	ue (in-lb)	ОК
X:	۵	X:	0	X:	0	X:	0	Apply
Y:	0	Y :	0	Y:	0	Y :	0	Zero All
Z :	-10	Z :	0	Z :	-10	Z :	0	
Total mag:	10	Total :	0	Total mag:	10	Total :	0	Cancel

Figure 6.28: Advanced Hand Loads Dialog

6.7 EXTERNAL APPLIED FORCES AND MOMENTS

The *Task-Input* | *External Applied forces and Moments* dialog box is used to enter loads at joints other than the hands (Figure 6.29) for one frame or for a range of frames. To select a range of frames, select the first frame and then use **SHIFT** key while selecting the last frame. Torques and forces can be applied to any listed joint (Wrists, Elbows, Shoulders, Center of Head, Low Back (L5S1), Hips, Center of Hips, Knees, Ankles, and Balls or Heels of Feet). Use this functionality to simulate situations like leaning against a table (force on the hips) or carrying a backpack (force and torque on the shoulder).

The force and torque magnitude values can also be altered using the **MOUSE SCROLL WHEEL**.

By default joint forces are displayed in the Stick-View Windows. To turn off the display of these joints, uncheck the **Stick-Views | Show Forces** Menu option.

6.7.1 Zero Current / Zero All

The **Zero Current** button will zero the entered forces and torques for the currently selected joint. The **Zero All** button will clear the entered forces and torques on every joint; even those not currently shown. This button will not affect hand loads.

6.7.2 External Load at Head Center

External forces or moments added to the Head Center are added at the center of the tragions (ear canal location). This can be used for head worn gear.

6.7.3 External Loads at the Heels or Balls of the Feet

The capability to enter loads at the bottom of the feet is provided for use with the Seated Manual Balance Mode which can be chosen under the Support Selection Command dialog. These are considered support forces and if enabled will appear on the stick-figure views in the correct colors for support forces. This capability could be used for situations where a known force is exerted by a foot as in pushing a pedal.

External Applied Fo	orces and Mome	nts	×
Joint	Right Wrist	•	ОК
Forces (Ib)			Apply
X-Component	0		Zero Current
Y-Component	0		Zero All
Z-Component	q		
Moments (in·lb)			
X-Component	0		
Y-Component	0		
Z-Component	0		Cancel

Figure 6.29: External Applied Forces and Moments Dialog

6.8 BODY SEGMENT ANGLES

The *body segment angles method* for entering postures uses the *Task-Input* | *Segment Angles* dialog and can model virtually any posture if the user enters the appropriate body segment angles described below.

Care has been taken to make body segment angle entry as consistent as possible. Nonetheless, the degrees of freedom require special attention for proper entry. Depending on what is being described, the reference planes for some of these angles differ. The program will, in certain cases, disallow an input if its error checking algorithm decides that the input exceeds a joint's range of motion. The angle definitions are given below.

Note that the horizontal angles do not have meaning when the arms or legs are perfectly vertical and need not be entered in this case.

6.8.1 Body Segment Angle Dialog

Choosing **Task-Input | Body Segment Angles** indicates that the *body segment angle method* for posture entry is to be used and displays the Body Segment Angle Entry Dialog, Figure 6.30. To use the body segment angle method for posture entry simply enter the body segment angles according to the definitions below. To enter a value in a specific field, click on the field or use the **TAB** key to move from field to field. The field sequence using the **TAB** key is to move through the left

side first, then the right side, and finally the trunk and head angles. After entering values select the **Apply** or **OK** buttons to affect the posture change.

If the posture is symmetric, enter the angles for one side and click on the **SYMMETRY** button to copy the values to the other side of the body and apply the angles to the analysis.

A body segment angle can also be altered using the INCREMENT buttons. Click on the angle value, then click on the increment value desired (1, 5, 10, 15, 20, 25), finally click on the "+" to increase the value in steps of the increment selected or click on the "-" to decrease the value. The posture will redraw automatically to provide feedback as to the effect of the incremental posture change. Note that the body segment angle changed is the angle highlighted in the "Limb Angles", "Trunk Angles" , or "Head Angles" section prior to using this feature. The MOUSE ROLLER can also be used for this function.

The neck angles are automatically adjusted when the head angles are changed. To adjust the head/neck angles manually select the **NECK ANGLES** button, see Section 6.8.5.

Body Segment /	Angles Left	Right	Trunk Angles Flexion 55	Increment (mouse wheel)	ОК
Hand Forearm Upper Arm Clavicle* Upper Leg Lower Leg Foot Toe	Horz Vert Rotation 100 -50 0 100 -50 65 -65 -20 0 90 -50 75 0	Horz Vert Rotation 100 -50 0 100 -50 0 65 -65 - -20 0 - 90 -50 - 75 0 -	Axial Rotation 0 Lateral Bending 0 Pelvic Lateral Tilt 0 Pelvic Axial Rotation 0 Head Angles 55 Axial Rotation 0 Lateral Bending 0		Apply Neutral T-Pose Neutral Wrist Undo Redo
*Angles measur	Symmetry> ed with respect to torso.	< Symmetry	Neck Angles		Cancel

Figure 6.30: Body Segment Angles Dialog

Use the **NEUTRAL WRIST** button to conveniently align the hand with the forearm. For **Hand Angles (Wrist Bending and Forearm Rotation)** see Section 6.8.6.

The **NEUTRAL T-POSE** button is also convenient to reset the posture angles to a starting posture. **UNDO** and **REDO** buttons are available for convenience and function as is standard.

6.8.1.1 Use of Shift Key

The **Shift Key** can be used with limb angles to change horizontal and vertical angles of a body segment along with the distal segments at the same time. For example, to change the vertical angle of the forearm and the hand at the same time, simply use the shift key and change the vertical angle of the forearm. The hand vertical angle will be changed also by the same number of degrees.

6.8.2 Body Segment Angle Depictions in Stick-View Windows

When and angle entry box in the Body Segment Angles Dialog is selected a graphic depiction of the angle is displayed on the appropriate stick figures in the Three-View windows. This is a valuable help in understanding the angles and entering them correctly.

If a posture is entered such that a joint angle is outside the range of motion for the joint then the joint on the stick-view graphic is set to red. See the Posture Report for range of motion limits.

6.8.3 Body Segment Angles

Most of the body segment angles are measured as global angles with respect to the horizon of the environment. The hand, lower arm, upper arm, clavicle, upper leg, lower leg, and foot are all similarly described by two angles; a horizontal angle and a vertical angle.

The trunk and head are each similarly described using three angles; flexion, lateral bend, and axial rotation. They will be defined individually.

The pelvis is allowed to tilt forward/backward or laterally and is described using global angles. The rotation of the pelvis about the vertical axis is not entered because the forward direction of the pelvis defines the "front" of the avatar or the positive Y-axis. The pelvis is the graphic root of the structure.

6.8.3.1 Horizontal Angles

Horizontal angles are measured between the body segment, or link, and the X axis while looking down onto the figure from overhead (Figure 6.31). Technically the angle is measured between the X axis and the projection of the link onto the horizontal X-Y plane at the superior joint of the link.

For example, the angle formed between the projected lower arm and the X axis constitutes the forearm horizontal angle. When the right forearm is aligned with the positive (+) X axis and the forearm is pointing away from the body to the right side, the angle is 0 degrees. When the left forearm is aligned with the negative (-) X axis and the forearm is pointing away from the body to the left side, the angle is 0 degrees. When either forearm is located in front of the X-axis, the angle is positive and is measured with respect to the X axis. If the forearm crosses behind the X-axis, then the angle is negative.

This horizontal angle measurement convention holds for the hand, lower arm, upper arm, upper leg, lower leg, and foot. The X-Y plane for the hand is created at the wrist joint center, for the lower arm at the elbow, for the upper arm at the shoulder joint center, for the upper leg at the hip joint center, for the lower leg at the knee joint center, and for the foot at the ankle joint center. Hand posturing is covered in Section 6.13.

Note that the horizontal angle does not have meaning when the body segment link is perfectly vertical (it has no projection onto the X-Y plane other than a point). The horizontal angle need not be entered in this case.

6.8.3.2 Vertical Angles

Vertical angles are measured between the lower arm and the horizontal X-Y plane intersecting the superior joint of the link. This time instead of projecting the link line of the arm onto the plane we simply measure the angle between the link and the plane. When the body segment is level with the joint, the link is on the plane and the joint angle is 0 degrees. If the link is above the plane, then the vertical angle is positive; if below, then the angle is negative (Figure 6.32).

This vertical angle measurement convention holds for the hand, lower arm, upper arm, clavicle, upper leg, lower leg, and foot. The measurement plane is the same as for the horizontal angle measurement in each case. Note that hand posturing is covered in Section 6.13.

6.8.3.3 Upper Arm Humeral Rotation

The shoulder joint is capable of three degrees of freedom. The upper arm horizontal and vertical angles define the direction of the upper arm but not the axial rotation about the upper arm bones (humeral rotation). 3DSSPP automatically determines the humeral rotation from the relationship between the lower and upper arms.

6.8.3.4 Upper Leg Femoral Rotation

The hip joint, like the shoulder, is capable of three degrees of freedom. The upper leg horizontal and vertical angles define the direction of the upper leg but not the axial rotation about the upper leg bone (femoral rotation). 3DSSPP automatically determines the femoral rotation from the relationship between the lower and upper legs.

Figure 6.31: Horizontal angle measurements

Figure 6.32: Vertical angle measurements

6.8.3.5 Clavicle Horizontal Angle

The clavicle angles allow the shoulder joint itself to move with respect to the torso. Adjustment of the clavicle angles is only available in the 3D Dynamic Mode.

The clavicle horizontal angle is the angle formed between the clavicle and the lateral dimension of the torso when viewing down the spine. Thus it is an angle local to the spine. If the clavicle is rotated forward of the torso, then the angle is positive; if the clavicle is rotated backward, then the angle is negative. This convention holds for both the right and left clavicle horizontal angles (Figure 6.33).

Figure 6.33: Clavicle horizontal angles

6.8.3.6 Clavicle Vertical Angle

The clavicle vertical angle is measured between the clavicle and the transverse plane intersecting the sternoclavicular joint. The transverse plane is perpendicular to the spine and so the angle is a local angle. When the clavicle is "above" the SCJ, the forearm vertical angle is positive; if below, the angle is negative (Figure 6.34).

Figure 6.34: Clavicle vertical angles

6.8.3.7 Trunk Flexion Angle

The trunk flexion angle is the angle between the projection of the trunk axis (the center of the hips to the center of the shoulders) onto the Z-Y plane and the positive Y axis (Figure 6.35). When standing straight, the trunk angle is 90 degrees. If the trunk is level with the horizontal plane (ground), the angle is 0°. If the trunk is flexed below the horizontal plane, the angle is negative. The range of motion for this angle should be such that the angle between the trunk and the upper legs is between 40 and 100 degrees.

Note that within the biomechanical model the trunk is formed by the *pelvis* and the *torso links* which are each assigned separate angles based on the entered trunk flexion angle according to an algorithm derived from empirical data (Anderson, 1983). The two links are visible in the human graphics in the display view windows.

Figure 6.35: Trunk flexion angle

6.8.3.8 Trunk Lateral Bending Angle

The trunk lateral bending angle is formed between the trunk axis and the Z-Y plane. If the torso is bent towards the positive X axis, the angle is positive. If the torso is bent toward the negative X axis, the angle is negative. Referring to Figures 6.36 a and b, note that this convention holds whether the torso is bent or erect. The range of motion for lateral bending is limited to +/-40 degrees.

(a)

(b) Figure 6.36: Lateral bending angle with stooped and non-stooped torsos

6.8.3.9 Trunk Axial Rotation Angle

The trunk axial rotation angle is defined as the rotation of the torso about the axis formed by the line segment from the L5/S1 disc to the center of the shoulders. The rotation should be measured as the left shoulder location relative to the X axis. If the left shoulder is rotated behind the X axis, the angle is positive (Figure 6.37a). If the left shoulder is rotated in front of the X axis, the angle is negative (Figure 6.37b). In other words, for counterclockwise rotation, the angle is positive and vice versa. The range of motion for this angle is limited to +/-90 degrees.

(a)

(b) Figure 6.37: Trunk positive axial rotation (a) and negative axial rotation (b)

6.8.3.10 Pelvic Forward Rotation Angle

Pelvic forward rotation is estimated by an algorithm within the 3DSSPP. However the angle can be altered in the Support Selection Dialog (Section 6.4). It is measured as the forward tilt of the pelvis about the centers of the hips (Figure 6.38). Draw a line from the center of the hips to the L5S1 and determine the angle between it and vertical. The axis of rotation is the Y axis. Forward rotation is positive for the purpose of the program Dialogs and reports. Internally, according to the right hand rule, it would be negative.

The seated pelvis is normally tilted backward more than estimated by 3DSSPP so an adjustment is required. See the Support Selection Dialog (Section 6.4). The amount of adjustment varies amounts.

Figure 6.38: Forward tilt of the pelvis

6.8.3.11 Pelvic Lateral Tilt Angle

Pelvic lateral tilt is the rotation of the pelvis from side to side (Figure 6.39). The axis of rotation is the Y axis. Rotation to the right, towards the positive X axis, is positive and to the left is negative.

6.8.3.12 Pelvic Axial Rotation

Pelvic axial rotation is the rotation of the pelvis about the Z axis. From overhead counterclockwise rotation is positive.

Figure 6.39: Lateral tilt of the pelvis

6.8.4 Head Angles in Segment Angles Dialog

The head angles in the Body Segment Angles dialog position the head and neck links such that the head is angled as specified. The neck segment angles will be automatically postured for normal bending of the head and neck. To control the head and neck angles individually see Section 6.8.5.

6.8.4.1 Head Flexion Angle

The head flexion angle in the *Task-Input* | *Segment Angles* dialog is a <u>global</u> angle measured with respect to a horizontal plane (Figure 6.40).

Figure 6.40: Head flexion angle

6.8.4.2 Head Lateral Angle

The head lateral bending angle is a <u>local</u> angle with respect to the torso (Figure 3.41). As the torso is moved the head will stay in the same relative position. The angle is measured between the axis of the head/neck and the projection of the same axis on the sagittal plane of the torso. Bending to the left is negative and to the right is positive. The range of motion for head lateral bending is limited to +/-40 degrees.

6.8.4.3 Head Axial Rotation Angle

The head axial rotation angle is a local angle measured with respect to the torso. As the torso is moved the head will stay in the same relative position. The rotation is about the axis of the head/neck (Figure 6.42). If the head is directed forward and symmetrical with respect to the torso, then the rotation angle is zero. Rotation to the right is negative and to the left is positive.

(b) Figure 6.41: Head lateral bending angle

(a)

(b) Figure 6.42: Head positive and negative axial rotation angles

6.8.5 Neck Angles Dialog

The **Neck Angles** button in the Body Segment Angles dialog will open the **Neck Segment Local Angles** dialog (Figure 6.43) which will allow specific positioning of the head and neck segments. The **MOUSE SCROLL WHEEL** can be used to increment or decrement the values by one degree per wheel click.

These angles are all local angles relative to the adjacent more proximal link. Note that the neck is divided in half into upper and lower links. The head only moves in flexion/extension with respect to the upper neck. The joints between the upper neck and lower neck and lower neck and thorax rotate in all three directions and have different limits as can be seen in the Posture Report (Figure 11.5).

Flexion	0.72
- Coort	0.72
Upper Neck Angles	
Flexion	2.44
Axial Rotation	0
Lateral Bending	0
Lower Neck Angles	
Flexion	0.84
Axial Rotation	0
Lateral Bending	0
ОК	Apply
	Cancel

Figure 6.43: Neck Segment Angles Dialog

6.8.6 Wrist Angles

The Hand Wrist Angles are set in the Body Segment Angle dialog (Figure 6.30) and are detailed below. For finger postures see Section 6.12.

To manipulate the wrist simply enter the hand segment angles according to the definitions below.

6.8.6.1 Hand Segment Angles

The hand angles allow manipulation of the wrist flexion and deviation and of the forearm rotation (supination/pronation). The hand segment is defined from the wrist center to the center of grasp. The angles are defined below.

6.8.6.1.1 Hand Segment Horizontal Angle

The horizontal angle is measured while looking down onto the arm (such that the hand segment is projected onto the X-Y plane at the wrist). The angle formed between the hand segment and the X axis constitutes the horizontal angle (Figure 6.44). When the hand segment is aligned with the X axis and the hands are pointing away from and to the side of the body, the angle is 0 degrees. When the hand segment is pointing in front of the X-axis, the angle is positive. If the hand segment crosses behind the X-axis, then the angle is negative. This convention holds for both the right and left horizontal angles.

Note that the horizontal angle does not have meaning when the hand segment is perfectly vertical (it has no projection onto the X-Y plane other than a point) and need not be entered in this case.

Figure 6.44: Hand segment horizontal angles

6.8.6.1.2 Hand Segment Vertical Angle

The vertical angle is formed between the hand segment and the horizontal X-Y plane intersecting the wrist. When the hand is level with the wrist, the joint angle is 0 degrees. If the hand is above the wrist, the vertical angle is positive; if below, the angle is negative. For both the right and left hand vertical angles, the value of the angle increases as the hand moves upward and decreases as the hand moves downward as indicated by Figure 6.45.

Be aware that, in this convention, the origin of the horizontal plane is located at the wrist and is independent of arm angles and overall body posture.

Figure 6.45: Hand segment vertical angles

6.8.6.1.3 Hand Rotation Angle

The hand rotation angle is a measure of the axial rotation of the wrist about the bones of the forearm and may be known as wrist supination/pronation. The angle is a local angle measured with respect to the arm posture and its magnitude is difficult to estimate from observation. Therefore it is best to enter a value and adjust it until the avatar appears correct. Technically the magnitude is the angle difference between the axis of the elbow and the flexion/extension axis of the wrist (Figure 6.46).

Note that if the elbow included angle is 180, the elbow is straight, then the Hand Rotation Angle also affects the rotation of the upper arm, the humeral rotation angle. When the elbow is bent this angle is given by the orientation of the forearm with respect to the upper arm. When the elbow is not bent, the humeral rotation is unknown. In this case one half of the hand rotation angle is applied to the upper arm and one half to the lower arm.

Figure 6.46: Hand rotation angle

6.9 Pre-set postures

Selecting **Task-Input | Pre-Set Posture** displays a list of postures (Figure 6.47) that can be selected and applied to the avatar. These can be used as a starting point when entering postures via the body segment angles or other methods.

Body Segment Angles	Ctrl+B	
Pre-Set Postures	>	Neutral Stand
Posture Prediction		Neutral T-Pose
Lock Trunk		Neutral Sit
Hand Grasp Angles		Manipulation Start
Run Batch File		Standing Lift
		Stoop Lift
		Squat Lift
		Forward Push
		Backward Pull

Figure 6.47: Pre-Set Posture Dialog

6.10 POSTURE PREDICTION

6.10.1 Introduction to the Inverse Kinematics Method of Posture Prediction

Choosing *Task-Input* | *Posture Prediction* indicates the *inverse kinematics method* of posture entry is to be used.

The concept of inverse kinematics is that if the positions of the hands relative to the feet can be specified, the positions of the other body joints and segments can be computed from algorithms based upon behavioral data. This means that in order to specify a posture, all that needs to be done is for the analyst to enter the positions of the hands, and the program will automatically "predict" the locations of the other body segments and joints. This prediction is based on these hand locations, the anthropometry of the worker, and the load at the hands. However, because the inverse kinematics algorithm is based upon regression equations, it yields the average posture a person would tend to take as a function of the hand locations and other task parameters. Obviously, because of behavioral, experiential, and training differences between individuals, not everyone will assume the same posture when the hands are at the same location. However, predicting a posture from known hand locations is always a good starting point for an analysis, since the preferred posture generated by inverse kinematics algorithm is typically a *reasonable* posture for the sake of analysis.

Once the starting posture is specified, the posture can be "fine-tuned" through "manipulating" or moving individual body joints or segments. Thus, in most cases, the general procedure employed when using the inverse kinematics method will be to first specify a starting posture by setting the locations of the hands, and then adjusting the posture by manipulating other joints of the body. No matter how much the rest of the body is manipulated, the hands will remain in the same position.

6.10.2 Standing Posture Prediction Dialog

The Posture Prediction Dialog (Figure 6.48) is used to specify the positions of the hands and feet relative to the *Measurement Coordinate Center* (a point on the floor centered between the ankles).

Note that the hand orientation helps the computer decide upon elbow elevation. When the palm is prone (palm down), the elbow tends to be higher in the air. The elbow is lower when the hand is semi -prone and is very low when the palm is supine (palm upward). A good rule of thumb is that if there is any doubt about the hand orientation, choose neutral. If the palm is not completely pointing down or completely pointing up, the best choice is neutral.

Posture Prediction			×
 Hand Orientation Pronated Neutral Supinated 	Hand Location(in)LeftRightLateral(X)8.4Horizontal(Y)18.6Vertical(Z)25.1	Ball of Foot (Relative)(in)LeftRightLateral(X)-1010Horizontal(Y)5.65.6Vertical(Z)11	OK Apply Undo Redo
	< Symmetry	< Symmetry	Cancel

To use posture prediction enter the hand and/or feet locations desired referenced to the *Measurement Coordinate Center*. The **Tab** key can be used to move to each entry box.

- Lateral: refers to the side-to-side distance from the center point where positive values are to the right and negative values are to the left of the subject.
- Horizontal: refers to the distance from the reference point in the forward-backward direction where forward distances are positive and backward distances are negative.
- *Vertical*: refers to the vertical distance from the reference point where positive values are above the point and negative values are below the point.

If the posture is symmetric, enter the angles for the right side and click on the **SYMMETRY** button to copy the values to the left side.

The location values can be incremented or decremented by using the **MOUSE SCROLL WHEEL**.

The Posture Prediction function was designed to be used with the default *Measurement Coordinate Center* (which for standing is the center of the ankles projected down to the lowest foot floor). If the *Measurement Coordinate Center* is not in the default location then the final hand location may not be at the correct location. Simply run the prediction a second time with the desired hand/foot locations and it should improve.

6.11 LOCK TRUNK

One way to enhance the direct manipulation posture entry method (using the mouse) is to use the Trunk Lock command. This feature allows the trunk to be "locked," preventing the inverse kinematics algorithm from changing the trunk joint angle. If the trunk is locked, then the hands can be moved with out the trunk changing position. The locked joint markers change to hollow circles which cannot be selected for direct manipulation. The Lock Trunk command can be accessed from the Task-Input menu, shown in Figure 6.49, or from the stickview popup menus , shown in the Figure 6.50.

Figure 6.49: Lock Trunk Command

Figure 6.50: Locking Mode Dialogs

🜆 Univ. of Michigan's 3DSSPP 7.0.7 beta - Untitled*

6.12 Hand Grasp Postures

The means to create detailed finger grasp hand postures is being developed. This currently affects the avatar view of the hand but not the biomechanical analyses or where forces are exerted on the hand (defaults to center of hand grasp location even if other hand postures are selected). Finger angle can be entered using the keyboard or by using the **MOUSE SCROLL WHEEL** to increment the decrement the values. Finger posturing is not available for the modeled shape avatar.

6.12.1 Hand Grasp Postures Segment Angles

The Hand Segment Angles dialog (Figure 6.50) will provide the means to create detailed finger grasp hand postures. Symmetry buttons to copy angles from one hand to the other and Undo and Redo buttons are included. Finger posturing is not available for the modeled shape avatar.

6.12.2 Direct Manipulation of Fingers

Direct manipulation of fingers is not currently available.

6.12.3 Pre-Set Hand Postures

Pre-set hand postures can be selected on the right side of the dialog (Figure 6.51).

Hand Grasp Ang	les		
	b) Flexion Abduction Pronation 0 0 0 0 0 0 0 Flexion Abduction Pronation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Digit 2 (Index) Left Flexion MCP 0 PIP 0 DIP 0 Right Flexion Abduction MCP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Digit 3 (Middle) Left Flexion Lat. Abduction MCP 0 0 PIP 0 DIP 0 Flexion Lat. Abduction MCP 0 0 0 0 0 0 0 0 0 0 0 0 0
* CMC = Carpa	Al Metacarpal Joint * MCF	P = Metacarpo Phalangeal Joint R Symmetry Digit 5 (Little) Left Flexion Abdu MCP 0 0 PIP 0 Right Flexion Abduc MCP 0 0 PIP 0 DIP 0 Flexion Abduc MCP 0 0 Flexion Abduc MCP 0 0 Flexion Abduc Flexion Ab	* IP = Interphalangeal Joint * PIP =
=		Apply Undo	Redo Cancel

6.13 RUN BATCH FILE

The Run Batch File feature enables automatic analysis of tasks specified in a data file. It is useful when many biomechanical analyses are to be performed on data derived from another program. The input data file must follow a specific format and must include all of the information normally specified for an analysis. The results of the analyses are output to an export file (Section 11.16). A log file is also produced. Both file locations default to the folder containing the batch file.

6.13.1 Batch File Format

6.13.1.1 First Line of File

The first line of all batch files must be: 3DSSPPBATCHFILE #

6.13.1.2 Command Structure

All lines must have one and only one command. The command must begin with a command name, upper case only, and must end with the terminating character "#". No characters should follow the terminating character. Blanks are used to delimit all commands, data items, and the terminating character (there must be a blank before the #). At least one blank must be used; additional blanks for visual organization are acceptable

The legal commands and their abbreviations are as follows:

ANTHROPOMETRY	(ANT)
ANTHROPOMETRY	(ANF)
ANTHROPOMETRY	(ANM)
AUTOEXPORT	(AUT)
COMMENT	(COM)
DESCRIPTION	(DES)
EXTERNALFM	(EX*)
EXPORT	(EXP)
FRAME	(FRM)
HANDLOADS	(HAN)
HANDCOMPLOAD	(HCL)
	(HCR)
LOCATIONS	(LOC)
OUTPUT	(OUT)
POSTUREPREDICTION	(PPR)
PAUSE	(PAU)
SEGMENTANGLES	(JOA)
SUPPORT	(SUP)

6.13.2 ANTHROPOMETRY Command

The ANTHROPOMETRY commands are used to set the gender, anthropometry values, avatar type, and related features.

6.13.2.1 ANTHROPOMETRY - ANT

The ANT anthropometry command is included to allow backward compatibility with older batch files. It enables the fixed avatar. The first data item is an integer representing the Gender; male is 0 and female is 1. The second data item is an integer representing the Percentile for height and weight; 95th is 0, 50th is 1, and 5th is 2. If the percentile integer is 3 then the Height and Weight are set according the next two data items which are both floating point values. If the percentile data item is not 3 then the last data items are not used in the analysis and should be entered as zeros.

ANT 0 3 65.5 150.2 #

6.13.2.2 ANTHROPOMETRY for the Fixed Shape Avatar - ANF

The ANF anthropometry command enables the fixed avatar with fixed fractions of mass and center of mass. The first data item is an integer representing the Gender; male is 0 and female is 1. The second data item is an integer to implement the Maintain Hand Positions; no is 0 and yes is 1. The third data item is an integer representing the Size Type; percentile is 0 and data entry is 1. The remaining data values are an integer representing the Percentile, and two floating point values representing Height and Weight. Unused data values should be entered as zeros.

ANF 0 0 0 50 0 0 # ANF 0 0 1 0 65.5 150.2 #

6.13.2.3 ANTHROPOMETRY for the Modeled Shape Avatar - ANM

The ANM anthropometry command enables the modeled avatar with modeled fractions of mass and center of mass. The first data item is an integer representing the Gender; male is 0 and female is 1. The second data item is an integer to implement the Maintain Hand Positions; no is 0, yes is 1.

The third data item is an integer representing the Size Type; percentile is 0 and data entry is 1. The remaining data values are the Percentile (integer), Height (floating point), Weight (floating point), Age (integer), and Seated to Standing Height Ratio (floating point). Unused data values should be entered as zeros.

ANM 0 0 1 0 65.5 180.2 45 0.55 #

6.13.3 AUTOEXPORT Command

The AUTOEXPORT command causes all subsequent ANT, HAN, JOA, JOI, and PPR commands to be followed by an analysis and exportation of result to the export file. The data item is an integer digit representing the desired state of the command. On is 1 and off is 0.

AUT 1#

6.13.4 COMMENT Command

The COMMENT command is used to document the batch file and can be used as often as desired in the batch file. It is ignored by 3DSSPP. An ordinary comment command might be entered as follows:

COM Anything you want to type to document your file. #

6.13.5 DESCRIPTION Command

The DESCRIPTION command is used to set the analysis units and the three documentation fields which are normally entered under the Task Description Dialog. The first data item is an integer, either 0 or 1, which sets the analysis units. English is 0 and metric is 1. The remaining four data items are strings which must be enclosed in quotes. They are the Task Name, Analyst Name, Analysis Comment, and Company Name. A typical description command line is as follows:

DES 0 "Task Name" "Analyst Name" "Just some comments." "Company" #

6.13.6 EXTERNALFM (Forces and Moments) Command

The EXTERNALFM command is used to enter external forces and moments (torques) to joints other than the hands. Torques and forces can be applied to any listed joint below associated with the specify command:

Command	Joint
EXA	Right Elbow
EXB	Right Shoulder
EXC	Left Elbow
EXD	Left Shoulder
EXE	Low Back
EXF	Right Hip
EXG	Right Knee
EXH	Right Ankle
EXI	Left Hip
EXJ	Left Knee
EXK	Left Ankle

The data items are floating point values and must be specified in the following order: X-Component Forces, Y-Component Forces, zcomponent Forces, X-Component Moments, Y -Component Moments, Z-Component Moments.

EXA 11.1 22.2 33.3 44.4 55.5 66.6 #

6.13.7 EXPORT Command

The EXPORT command is the same as the new OUTPUT command and will be retired in the future.

EXP #

6.13.8 FRAME Command

The FRAME command specifies the program's current frame. Subsequent batch commands will operate on this frame. If the frame command is not used in a batch file then all commands will apply to the current frame before starting the batch file. Parameters for the FRAME command include:

+ n	move n frames forward
n	move n frames backward
n	move to frame n
FIRST	move to first frame
LAST	move to last frame
AUTO	advance to the next frame after JOA

There must be spaces between the command and the parameter. There must also be a space between the operator (+ or -) and the frame number (n).

FRM LAST # FRM + 1 # FRM 5 #

6.13.9 HANDLOADS Command

The HANDLOADS command is used to input the magnitude and direction of the loads on each hand for the subsequent analyses. The magnitude data items are floating point values and the angle data items are integers. The values must be specified in the following order: Left magnitude, left vertical angle, left horizontal angle, right magnitude, right vertical angle, and right horizontal angle.

HAN 15.5 -20 85 22.2 -15 80 #

6.13.10 HANDCOMPLOAD Command

The HANDCOMPLOAD command is used to input the hand force and moment (torque) component loads for the right (HCR) or left (HCL) hands for the subsequent analyses. The data items are floating point values and must be specified in the following order: X-Component Force, Y-Component Force, Z-Component Force, X-Component Moment, Y-Component Moment, and Z-Component Moment.

HCL 11.1 22.2 33.3 44.4 55.5 66.6 # HCR 11.1 22.2 33.3 44.4 55.5 66.6 #

6.13.11 LOCATIONS Command

The LOCATIONS command allows the entry of (x,y,z) joint locations data for a single posture in the same format as the Input LOC File (see Section 10.4).

LOC x,y,z,.....x,y,z #

6.13.12 OUTPUT Command

The OUTPUT command initiates an analysis and exports the results to the export file. The data exported and the format are controlled by the Export Report Data command (Section 11.16). The default for this command is to export all data, the separator is a comma, and files are appended. The exported filename will be the batch filename with the added text " export.txt". This command has no data items.

OUT #

6.13.13 PAUSE Command

The PAUSE command causes a pause after all subsequent analyses. The data item is an integer representing the desired length of the pause in milliseconds. If the integer given is 0, then a message window is displayed instructing the user to click to continue.

PAU 0#

6.13.14 POSTURE PREDICTION Command

The POSTUREPREDICTION command performs a posture prediction using the hand locations as in the programs posture prediction command. The values to be entered and their order are: : Left hand horizontal location, left hand vertical location, left hand lateral location, right hand horizontal location, right

hand vertical location, right hand lateral location, and Hand Orientation. The units can be either inches or cm and will be interpreted depending upon the units mode of the program when the batch file is run. The Hand Orientation value must be either 0,1, or 2 corresponding to pronated, neutral, and supinated.

PPR 15.8 25.8 -6.7 15.8 35.8 6.7 1 #

6.13.15 SEGMENTANGLES Command

The SEGMENTANGLES command is used enter the posture segment angles as listed in the Segment Angles Menu Dialog for subsequent analyses. All of the values are integers and the data items are input in the order of left side, right side, and trunk. Specifically: Hand left horizontal, hand left vertical, hand left rotation, forearm left horizontal, forearm left vertical, upper arm left horizontal, upper arm left vertical, clavicle left horizontal, clavicle left vertical, upper leg left horizontal, upper leg left vertical, lower leg left horizontal, lower leg left vertical, foot left horizontal, foot left vertical, hand right horizontal, hand right vertical, hand right rotation, forearm right horizontal, forearm right vertical, upper arm right horizontal, upper arm right vertical, clavicle right horizontal, clavicle right vertical, upper leg right horizontal, upper leg right vertical, lower leg right horizontal, lower leg right vertical, foot right horizontal, foot right vertical, head flexion, upper neck flexion, upper neck rotation, upper neck lateral bending, lower neck flexion, lower neck rotation, lower neck lateral bending, trunk flexion, trunk rotation, trunk lateral bending, pelvis rotation, and pelvis lateral bending.

JOA 110 -10 40 85 -25 10 -80 -20 15 90 -35 90 -70 95 0 70 -10 -40 70 -20 5 -85 -20 15 90 -40 -90 -70 85 0 90 90 0 0 90 0 0 40 -5 10 0 0 #

6.13.16 SUPPORT Command

The SUPPORT command allows the support conditions to be entered. The data items are: Feet Support (0=both, 1=left, 2=right, 3=none), Position (0=stand, 1=seated), Front Seat Pan Support (0=no, 1=yes), Seat Has Back Rest (0=no, 1=yes), and Back Rest Center Height (real number in cm, greater than 19.05).

SUP 0 0 0 0 20.0 #

6.13.17 Example Batch File

3DSSPPBATCHFILE # COM # DES 0 "Sample Batch" "Suzy Anybody "Nothing very meaningful" "Company" # AUT 0 # PAU 0 # ANT 1 3 64.2 115.0 # COM LHAND LA UA CL UL LL FT RHAND LA UA CL UL LL FT HD UNK LNK TR PL # JOA 90 0 0 90 0 90 -45 -20 15 90 -75 90-75 90 0 90 0 90 0 90 -45 -20 15 90-75-90-75 900 0 000 000 900000# HAN 15 -20 85 22 -15 80 # EXP # COM # COM # COM Enable auto export and do 5 different hand loads # AUT 1 # DES 0 "Loads A" "Suzy Anybody" "Hand loads case A" "Company" # HAN 15 -20 85 15 -15 80 # DES 0 "Loads B" "Suzy Anybody" "Hand loads case B" "Company" # HAN 20 - 20 85 20 - 15 80 # DES 0 "Loads C" "Suzy Anybody" "Hand loads case C" "Company" # HAN 25 -20 85 25 -15 80 # DES 0 "Loads D" "Suzy Anybody" "Hand loads case D" "Company" # HAN 30 -20 85 30 -15 80 # DES 0 "Loads E" "Suzy Anybody" "Hand loads case E" "Company" # HAN 35 -20 85 35 -15 80 # COM # COM #

COM Do the 3 different percentiles for female with English output #

COM

DES 0 "Anthro A" "Suzy Anybody" "Female 5th" "Company" #

ANT 1 2 0 0 #

DES 0 "Anthro B" "Suzy Anybody" "Female 50th" "Company" #

ANT 1 1 0 0 #

DES 0 "Anthro C" "Suzy Anybody" "Female 95th" "Company" #

ANT 1000#
Chapter 7: VIEW MENU COMMANDS

The **View Menu** (Figure 7.1) contains the Dialog boxes for controlling the program display windows, strength limits, and the measurement system coordinate center location.

7.1 AUTO TILE

If the *Auto Tile* command is checked, then the standard 3 over 2 arrangement of the view windows will be reset when ever the program window is sized. If an alternative arrangement of the view windows is desired, then the Auto Tile feature should be disabled. To enable or disable simply click on the command.

7.2 TILE NOW

If the *Tile Now* command is selected the view window tiling will be immediately reset to the standard 3 over 2 arrangement.

7.3 STRENGTH LIMITS

The strength limits shown on the screens and used in the reports are set in the Strength Limits Dialog (Figure 7.2). The default values are from NIOSH, (Section 1.3.1.1). Custom upper and lower limits for males and female can easily be entered.

l	36 U	niv. of	Michigan's 3	DSSPP	7.0.7 - Untitled	*			
	File	Edit	Task-Input	View	Stick-Views	Avatar-View	Animation	Reports	About
	36	Top - \	/iew from +Z	~	Auto Tile		G	т [
					Strength Limits				
					Measurement (Coordinate Cer	nter		
					Windows and E	Bars		>	
I					Bar Graphs			>	
					Insert Backgrou	und Image			

×
]

Figure 7.2: Strength Limits Dialog

7.4 MEASUREMENT COORDINATE SYSTEM ORIGIN

The center of the measurement coordinate system can be set using the Measurement Coordinate System Origin Dialog (Figure 7.3). Changing the center will alter all of the entered, displayed, and reported location values. The default center for standing mode cases is at the center of the feet. (Center of the ankles projected downward to the floor support of the lowest foot heel or ball.) For seated mode cases the default center is at the Seat Reference Point (SRP). Center locations other than the default can be set using the Dialog.

7.5 WINDOWS AND BARS DISPLAY

The *Windows and Bars* select command (Figure 7.4) can be used to hide or display the main program windows and bars. A window or bar is displayed if the command is checked and hidden if it is not checked. To check or uncheck simply click on the command with the LEFT mouse button.

If a window is accidently closed by selecting a the title bar close box, then it can be re-displayed using this command.

The Status Bar, at the very bottom of the screen displays various help and error messages depending upon the current operation.

Measurement Coordinate System Origin	×
Center Location	
• Default	ОК
(Center of ankles projected to lowest floor surface)	Apply
C Body part	
☐ Add Offset	
0.0 0.0	
X-Coordinate Y-Coordinate Z-Coordinate	Cancel

Figure 7.3: Measurement Coordinate System Origin Dialog

ז's 3l	's 3DSSPP 7.0.7 - Untitled*								
out	View	Stick-Views Avatar-View Animation Re	port	s A	About				
1 +Z	\checkmark	Auto Tile							
_		Tile Now Ctrl+	Γ						
		Strength Limits							
		Measurement Coordinate Center							
		Windows and Bars	>	~	Top View Window				
		Bar Graphs	>	~	Front View Window				
		Insert Background Image		~	Side View Window				
	_			~	Oblique View Window				
				~	Status View Window				
					Animation Bar				
			~	Status Bar					
				_					

Figure 7.4: Windows and Bar Display

7.6 BAR GRAPHS

Selecting *View* | *Bar Graphs* while the Status Window is active allows the user to display or hide a specific Strength Percent Capable and Percentage of Maximum Voluntary Contraction bar graph. See Figure 7.5. A bar graph is displayed if the command is checked and hidden if it is not checked. To check or uncheck simply click on the command with the LEFT mouse button.

7.7 INSERT BACKGROUND IMAGE

Selecting *View* | *Insert Background Image* allows the user to set the background of the Avatar-View and/or the Stick-View Windows for the task being analyzed to either a solid color or a digital image. See Section 9.5 for more information.

Figure 7.5: Bar Graph Display

Chapter 8: STICK-VIEW MENU COMMANDS

The Stick-Views Menu (Figure 8.1) contains the Dialog boxes for controlling the display attributes of the three *Stick-View Windows*. These windows may be rearranged and manipulated as desired by the analyst. The Stick-View Windows consist of three views: top view (horizontal plane), front view (frontal plane), and right side view (sagittal plane). When a new task file is opened, the default layout locates the top view in the top left window, the front view in the top center window, and the side view in the top right window. The figures, representing the posture being modeled, are drawn to scale according to the selected anthropometry and include force direction arrows when applicable (force vectors which are perpendicular to the plane of the screen are not drawn).

These are the only windows in which direct manipulation can be used to adjust the modeled posture; in addition, direct manipulation can only be used when the figures are displayed as stick figures.

8.1 SHOW FORCES

Selecting *Stick-Views* | *Show Hand Forces* allows the user to toggle the display of joint and hand forces in the Stick-View Windows.

8.2 SHOW SUPPORT FORCES

Selecting *Stick-Views* | *Show Support Forces* allows the user to toggle the display of support force vectors under the feet or other support surfaces. See Section 6.4. The force vector colors can be changed using the Colors Command. See Section 8.4.

8.3 SHOW CENTER OF MASS

Selecting *Stick-Views* | *Show Support Center of Mass* allows the user to toggle the display of the center of mass symbol on the front and side views. See Figure 8.4.

Figure 8.1: Stick-Views Menu

Insert Background Image...

8.4 COLORS

Selecting *Stick-Views* | *Colors* brings up a Dialog box (Figure 8.2) that allows the user to change the color of elements in the Stick-View Windows. To change any color, simply click the corresponding

Button and use the Color Selection Dialog box to choose a new color.

8.5 GRID OPTIONS

Selecting *Stick-Views* | *Grid Options* opens the dialog in Figure 8.3 where a grid to help judge location can be added to the Stick View windows as in Figure 8.4. Note that the grid lines up with the current center of the coordinate system.

Figure 8.2: Color Options Dialog

Figure 8.4: Side view with 8-inch grid

8.6 LOCK TRUNK

Selecting *Stick-Views* | *Lock Trunk* turns on or off the trunk lock mode for direct manipulation of the posture using a mouse, see Section 3 3.5 and 6.11.

8.7 DEFAULT VIEW

Selecting *Stick-Views* | *Default View* returns the stick figures to their default sizes and to the center of the windows.

8.8 CHANGE SIDE-VIEW TO OTHER SIDE

Selecting *Stick-Views* | *Change Side-View* changes the side-view between right and left side views.

8.9 INSERT BACKGROUND IMAGE

Selecting *Stick-Views* | *Insert Background Image* allows the user to set the background of the avatarview and/or the Stick-View Windows for the task being analyzed to either a solid color or a digital image. See Section 9.5 for more information.

8.10 POPUP CONTEXT MENU

The Stick-View windows also have popup context menus that are view by right clicking the mouse button. These are mentioned in Section 3.4. Examples are shown in Figures 8.5 and 8.6.

Undo Direct Manipulation	Ctrl+Z
Redo Direct Manipulation	Ctrl+Y
Default View	
Show Center of Mass	
Grid Options	
Body Segment Angles	Ctrl+B
Hand Posture	
Pre-Set Postures	>
Posture Prediction	
Lock Trunk	
Support Selection	
Insert Background Image	

Figure 8.5: Context (Popup) menus for top and front view windows

Undo Direct Manipulation	Ctrl+Z
Redo Direct Manipulation	Ctrl+Y
Default View	
Show Center of Mass	
Grid Options	
Body Segment Angles	Ctrl+B
Hand Posture	
Pre-Set Postures	>
Posture Prediction	
Lock Trunk	
Support Selection	
Change Side-View to View Other Side of Body	
Insert Background Image	

Figure 8.6: Context (Popup) menus for the side view window

Chapter 9: AVATAR-VIEW MENU COMMANDS

The **Avatar-View Menu** (Figure 9.1) contains the Dialog boxes for controlling the display attributes of the Avatar-View Window. While the stick-views are useful for viewing vertical and horizontal angles for data entry, they do not offer an accurate means of comparing the final posture to photographs or video of the actual worker performing the task. 3DSSPP provides this user-defined avatar-view utilizing a *Graphic Human Model*. This view simplifies the process of comparing the modeled posture to photographs and aids in accurately representing the actual task.

In the Avatar-View Window the human figure may be viewed from any distance and view angle. Additionally, a camera focal length can be simulated which changes the perspective in the scene. This is very useful when comparing the modeled posture to photographstaken with different focal length lenses since different focal lengths produce different perspective distortions. These can be matched by setting the focal length to match the camera using the **Avatar-View** | **Camera** command. The Avatar-View Window can also enhance posture evaluation and realism if environment objects are used. 3DSSPP provides three different kinds of objects that can be placed in the figure's immediate environment: a hand-held object (cube, sphere, or cylinder), a barrier (vertical wall or horizontal table), and a floor. The barrier can be userdefined for length and width as well as positioned using a cylindrical coordinate system centered on the human figure. 3DSSPP automatically fits the handheld object to the space between the figure's hands and always centers the hands on the sides of the hand-held object. If the task being modeled involves an asymmetrically held object, the avatarview image will not match the actual task. This is a function of the graphics display and has no bearing on the biomechanical analyses.

File	Edit	Task-Input	View	Stick-Views	Avatar-View	Animation	Reports	About
35	Top - \	/iew from +Z	Axis		Show Fr Human Environ Camera Lighting Insert Ba	ame Figure ment ackground Im	age	23

Figure 9.1: Avatar-View Menu

9.1 SHOW FRAME

Selecting *Avatar-View* | *Show Frame* will toggle on and off the display of the frame number near the bottom center of the avatar window. This is useful when creating an avi movie file of the avatar.

9.2 HUMAN FIGURE

Selecting **Avatar-View** | **Human Figure** displays a dialog box (Figure 9.2) which allows the user to select the following display options relevant to the human figure.

9.2.1 Avatar Type

Two avatars are provided in the 3DSSPP; Fixed Shape and Modeled Shape. The avatar can be chosen in the Avatar-View Human Figure dialog or in the Anthropometry Command Dialog. See Section 6.5 for the Anthropometry Command Dialog and for more information about the avatars.

9.2.2 Model Type

Two graphic model displays of the human figure are provided. The default is to display the Flesh figure model. The *Wireframe* figure model is transparent and shows the surface elements (quadrangles) used in both figure models.

Figure 9.2: Avatar-View Human Figure Dialog

9.2.3 Bone Links

These buttons allow the user to view the avatar's internal "bones". These are not exactly the same as the links in the stick-figures as the bones and joints in the actually model are more true to actual anatomy. For example, a person asked to stand naturally does not necessarily have the ankles, knees, hips all in a vertical line.

9.2.4 Clothing Color

These buttons allow the user to change the color of the avatar's apparel. Individual colors can be specified for shirts and pants for both males and females.

9.2.5 Skin Color

The figure's skin can be changed to any color. The current skin color is displayed in the color box. To change the color, click "Skin Color" button and select a new color using the provided dialog box.

Figure 9.3: Avatar-View Environment Dialog

9.3 ENVIRONMENT

Selecting **Avatar-View** | **Environment** displays a dialog box (Figure 9.3) which allows the user to select the following display options relevant to environment objects. This feature is provided to aid the analyst in matching postures to photographs or video images. However, physical interaction between the environment items and the human figure is not calculated nor are analysis results affected by the presence or absence of environment objects.

9.3.1 Floor

This object (Figure 9.4) has fixed dimensions and is automatically positioned beneath the figure's feet. Click on the box to insert or remove the floor from display.

Figure 9.4: Example of Avatar-View environment

9.3.2 Handheld Object

A handheld object can be placed between the hands. It will automatically be as wide as the hands and will be positioned between the hands with the hands centered on the sides of the object. The inclusion of the hand-held object on the graphics display has no bearing on the biomechanical analyses and is only included for realistic appearance.

- *Type*: Four object options are available none, cube, cylinder, or sphere. The object is automatically positioned at the midpoint of the hands and scaled to fill the space between the hands. The default is no object.
- Height: With this field, the vertical dimension of the handheld object is specified in inches or centimeters, depending on the units currently selected. The vertical dimension is measured from the bottom to top of the object at its largest cross section.
- Depth: With this field, the horizontal (forward-backward) dimension of the handheld object can be specified in inches or centimeters, depending on the units currently selected. The horizontal dimension is measured from the front of the object (farthest side from the figure) to its back (closest side to the figure) along a line that lies in the global horizontal plane and is perpendicular to the line connecting the hand centers. In the three-dimensional display, typically appears as the "depth" of the object when the figure is viewed from the side.
- Object Offset: With these fields, the horizontal (forward-backward) and vertical locations of the handheld object with respect to the center of the hands can be adjusted.

9.3.3 Barrier

A barrier represents either a wall or a table as a thin plate of user-defined thickness. A wall and a table cannot be displayed simultaneously. The barrier may be repositioned if it appears to be in contact with the humanoid. The "Distance", "Elevation", and "Azimuth" input fields refer to a cylindrical coordinate system with the origin at the center of the feet at the height of the lowest foot. The central axis points up vertically and the angle reference line projects straight ahead from the figure.

- *Type*: Three barrier options are available none, wall, and table. Only one barrier can be displayed at a time and the default is no barrier. The wall type is oriented vertically and always faces the figure. The table type is oriented horizontally with its inner edge always facing the figure.
- *Length*: This field specifies the barrier's left-toright horizontal dimension. This dimension appears the same and is measured the same for either the wall or the table barrier types.
- *Width*: This field allow the user to specify the barrier's vertical dimension as a wall or its horizontal front-to-back dimension as a table.
- *Thickness*: This field allows the user to specify thickness of the barrier.
- Distance: This input field specifies the radial distance of the barrier from the avatar's central vertical axis.
 For both the wall and the table, this dimension is measured horizontally from the vertical axis of the cylindrical coordinate system to the barrier's center (see above).
- Azimuth: This input field specifies, in degrees, the angular position of the barrier's center with respect to a reference line projecting straight out in front of the avatar from the feet center point. Facing the avatar from the front, positive azimuth values move the barrier to the viewer's right (the figure's left) in a circular arc centered on the cylindrical coordinate system's vertical axis. Negative azimuth values move the barrier around to the viewer's left. The range of azimuth values is -180 to 180 degrees.
- Pitch: This input field specifies, in degrees, the angular tilt of the barrier about the x-axis the avatar. For a table 90 degrees will be a normal table and for a wall 90 degrees will be a normal wall.

• *Elevation*: For both the wall and the table, this input field asks for the dimension measured vertically from the origin to the barrier's top surface.

9.3.4 Color

Environment items can be displayed in any color including a separate color for the outline.

9.4 CAMERA

For viewing the figure, the human graphic display uses a camera metaphor. Viewing position is changed by moving toward or away from the figure (changing radius); circling around the figure to the right or left (changing rotation); or circling up and over or down and under the figure (change in vertical tilt). As this movement occurs, the camera remains directed on the figure's hips and always upright (e.g., does not roll). In addition, the figure can be made to appear larger or smaller by increasing or decreasing the camera's focal length, similar to using a zoom lens. 3DSSPP provides the camera metaphor for more exact matching of avatar postures to photographs or video.

Selecting *Avatar-View* | *Camera* displays a dialog box (Figure 9.5) which allows the user to select the following model viewing options.

- *Focal Length*: This field specifies the camera's focal length. High focal length values magnify and flatten the image, low values make the image smaller and distorted.
- *Distance*: This field specifies the radial distance of the camera's film plane to the center of the figure's hips.
- Vertical Tilt: This field specifies the vertical angle of the camera in degrees. Vertical tilt is a measure of the angle from the horizontal plane at which the object is being observed. Ranging from -89° to 89°, 0° is at waist level looking at the object and 89° is directly overhead looking down on the object.
- Rotation: This field specifies the angle from a vertical plane separating the left and right halves of the object from which it is being observed. Ranging from -180 to 180 degrees, 0 degrees is looking directly at the front of the figure while 90 degrees is looking at the figure's left side (observer's right side).

The camera view can be adjusted using the mouse by clicking and dragging in the Avatar-View Window. See Section 3.6.

Avatar-View Camera	×
Camera Location Focal Length: 50 mm Distance: 90 in	OK Apply
Camera Angle Vertical Tilt: 20 Degrees	Derault view
Rotation: -20 Degrees Display Offset Horizontal Offset: 0 in	
Vertical Offset: 0	Cancel

Figure 9.5: Avatar-View Camera Dialog

9.5 INSERT BACKGROUND IMAGE

Selecting *Avatar-View* | *Insert Background Image* allows the user to set the background of the avatarview and/or the Stick-View Windows for the task being analyzed to either a solid color or a digital image (Figure 9.6).

9.5.1 Image

Click on **Browse** to load a digital image file and set it as the background for the avatar window. The Windows file input dialog will appear. Select an image file and click **Open**. Currently supported file types include: gif, icon, and jpeg. Be sure the **Use Image** box is checked and select **Apply**. The digital image will appear in the background of the avatar window or any stick-view window. The Graphic Human Model will be visible on top of the image. Choose either **Center** or **Stretch** to adjust the view of the image.

9.5.2 Color

If a background image is not selected then the background is set as a solid color. The solid color can be changed by clicking on *Select Color*. The Windows colors dialog will appear and a new color can be selected or created.

9.5.3 Figure Transparency

The transparency of the digital image can be controlled to allow the image to appear through the avatar or stick views. Adjust the slider to achieve the desired effect.

9.5.4 Select Window to Display the Image

The digital image can be displayed in the background of the avatar window or any of the stickview windows. At least one of the windows must be selected.

9.5.5 Image Orientation

3DSSPP does not have the ability to rotate the image. The rotation can be fixed by: Opening the image on the computer screen outside of 3DSSPP, screen capture using the Snipping Tool (Windows Accessory), and then saving as a new JPG from the Snipping Tool. This will save the image in the orientation on the screen.

Insert Background Image		×
Image © Use Image Position: © Center © Fit Window Browse	Color C Use Color Select Color	OK Apply
Figure Transparency	100%	
Add background image to	Hominoid-View	Cancel

Figure 9.6: Avatar-View Background Dialog

9.6 LIGHTING

The **Avatar-View** | **Lighting** dialog (Figure 9.7) controls the shading of the avatar. Automatic shading can be selected by checking the "Use fixed 3point lighting scheme" button. The light intensity can then be chosen for the desired effect. The Single-Point lighting is another option to control the positioning of a single light source illuminating the avatar.

Avatar-View Lighting	×
Lighting Options C Use single-point light source Front/Back- Front C Center C Back Left/Right C Left C Center C Right C Bottom	OK Apply Defaults
Use three-point light source Intensity 0% 60%	Cancel

Figure 9.7: Avatar-View Lighting Dialog

Chapter 10: ANIMATION MENU COMMANDS

The **Animation Menu** (Figure 10.1) contains commands to enter a series of frames into 3DSSPP. The frames are assumed to be a sequence of postures forming an animation of a motion, but they could just be a collection of static postures.

10.1 FRAME PARAMETERS FOR BIOMECHANICAL ANALYSES

Most 3DSSPP parameters are global and apply to all frames. Others are local and can be specified for each frame individually. The local parameters are listed in Table 10.1. This means that the forces on the body and some other parameters can be changed during a simulated motion.

Table 10.1: Local Per-Frame Parameters						
Body segment angles						
Hand posture angles						
Hand forces, (x, y, z)						
Hand moments, (x, y, z)						
External applied forces and moments						
Standing foot support; right, left, or both						

10.2 ANIMATION FRAME CONTROL BAR

In 3D Dynamic mode the animation frames are depicted on the Animation Frame Control Bar at the bottom of the program window (Figure 10.2) and appear as a frame timeline. The frame number is below the timeline and the time in seconds is above. Frames may or may not be defined with entered data. Upon default startup only frame one will contain data. Each numbered animation frame generates a biomechanical analysis specific to the posture and other information contained in the frame. To display and analyze a frame simply select it by clicking with the mouse. The right and left keyboard cursor arrow keys can be used to scroll through the frames as well. Use the SHIFT key to select multiple frames. The loads can be changed for a selection of frames.

👪 Univ. of Michigan's 3DSSPP 7.0.7 beta - Untitled*

File	Edit	Task-Input	View	Stick-Views	Avatar-View	Animation	Reports	About	
25	Top - \	/iew.from +7	Avis			Import	t C3D File		
	iop - i	new nonn+2	AAB			Import	t Loc File		
						Predict	t Motion		
						Export	AVI File		
						Set Fra	mes/Seco	nd	
						Section	ines/ Seco		

Figure 10.1: Animation Menu

The frames shown on the Frame Control Bar are color coded. Green frames are key frames entered by the user. Pink frames are predicted using interpolation. Orange frames are predicted using the Reach Motion Prediction algorithm (future). Undefined frames are blank.

10.2.1 Playing Animation Frames

The defined, or entered, frames can be viewed like an animation by using the "player" on the left side of the Animation Frame Control Bar. The player controls include Go to Start, Step Backward, Play Backward, Pause, Play Forward, Step Forward, and Go to Last. They behave as expected, however, if play is selected while playing, then it will stop playing. This allows for a quick pause.

The playback speed can be altered using the slider bar and button below the play button. The actual playback speed will be limited by the processing power of the computer.

10.2.2 Animation Popup Context Menu

The Animation Frame Control Bar context menu will appear when the bar is right clicked (Figure 10.3). This menu allow the editing of the frame time-line including. Other animation related commands are also available as buttons (Section 10.2.3) or in the Animation Menu.

Figure 10.3: Animation Context Menu

10.2.3 Animation Edit Buttons

Two buttons are available at the right end of the bar to help add and delete frame from the timeline. These are in addition to the editing commands available in the context menu (Section 10.2.2).

10.2.4 Inserting a String of Blank Frames

A special command is available to insert a series of frames into the timeline. Place the mouse cursor between two frames and click on the insert arrows and drag to add frames. The context box shown in Figure 10.4 will also allow frames to be inserted at the point of the arrow. The added frames are linear interpolations between the original two frames. Frames can only be added between valid, nonempty, frames.

Figure 10.4: Animation frame insert function

10.3 IMPORT C3D FILE

The *Animation* | *Import C3D File* command allows the entry of C3D files collect by a tracking system. The following locations must be included in the C3D file.

Label	Definition
HEAD	Head center between tragions
FHED	Front of Head surface at nasion
C7T1	C7T1 joint center
STER	Sternoclavicular center
L5S1	L5S1 joint center
LSHO	Left shoulder joint center
LELB	Left elbow joint center
LWRI	Left wrist joint center
LHAN	Left hand grip center
LHIP	Left hip joint center surface
LKNE	Left knee joint center
LANK	Left ankle joint center
LTOE	Left foot ball joint center
RSHO	Right shoulder joint center
RELB	Right elbow joint center
RWRI	Right wrist joint center
RHAN	Right hand grip center
RHIP	Right hip joint center surface
RKNE	Right knee joint center
RANK	Right ankle joint center
RTOE	Right foot ball joint center

These markers are applied to joint center locations which are then used to calculate angle orientations of body segments. Errors will occur when using surface markers. The following are some suggestions. The HEAD marker could be created virtually from markers placed on a head band. Other virtual joint center markers could be created from surface markers projected into the body segment. The hand grip center virtual marker could be created from markers on the back of the hand. Elbow, wrist, knee, and ankle joint virtual markers could be created form lateral and medial surface markers. The shoulder joint marker could be created from a surface marker at the acromion process and projected appropriately inward.

10.4 IMPORT LOCATION FILE

The *Animation* | *Import LOC File* command allows the entry of special files of frames of body joint center locations (X,Y,Z). Units should be cm. Each line will be a separate frame. The values on each line should be separated by spaces and there must be no spaces at the start of the line. The format must be one of the following three formats each having a different filename extension. (Bold values are required for 3DSSPP.)

LOC File	filename.loc	
Value	Anatomical Location	Attribute
1 - 3	Top Head	Skin surface
4 – 6	L. Head	Skin surface
7 – 9	R. Head	Skin surface
10 - 12	Head origin	Virtual point
13 – 15	Nasion	Skin surface
16 – 18	Sight end	Virtual point
19 - 21	C7/T1	Joint center
22 – 24	Sternoclavicular Joint	Joint center
25 – 27	Suprasternale	Skin surface
28 – 30	L5/S1	Joint center
31 – 33	PSIS	Joint center
34 – 36	L. Shoulder	Joint center
37 – 39	L. Acromion	Skin surface
40 – 42	L. Elbow	Joint center
43 – 45	L. Lat. Epicon. of Humer.	Skin surface
46 – 48	L. Wrist	Joint center
49 – 51	L. Grip Center	Virtual point
52 – 54	L. Hand	Skin surface
55 – 57	R. Shoulder	Joint center
58 - 60	R. Acromion	Skin surface
61 – 63	R. Elbow	Joint center
64 – 66	R. Lat. Epicon. of Humer.	Skin surface
67 – 69	R. Wrist	Joint center
70 – 72	R. Grip Center	Virtual point
73 – 75	R. Hand	Skin surface
76 – 78	L. Hip	Joint center
79 – 81	L. Knee	Joint center
82 – 84	L. Lat. Epicon. of Femur	Skin surface
85 – 87	L. Ankle	Joint center
88 – 90	L. Lateral Malleolus	Skin surface
91 – 93	L. Ball of Foot	Virtual point
94 – 96	L. Metatarsalphalangeal	Skin surface
97 – 99	R. Hip	Joint center
100 - 102	R. Knee	Joint center
103 – 105	R. Lat. Epicon. of Femur	Skin surface
106 - 108	R. Ankle	Joint center
109 – 111	R. Lateral Malleolus	Skin sutace
112 – 114	R. Ball of Foot	Virtual point
115 – 117	R. Metatarsalphalangeal	Skin surface

SLOC File filename.sloc

Value	Anatomical Location	Attribute
1-3	Head origin	Virtual point
4 – 6	Nasion	Skin surface
7 – 9	C7/71	Joint center
10 - 12	Sternoclavicular Joint	Joint center
13 – 15	L5/S1	Joint center
16 - 18	L. Shoulder	Joint center
19 – 21	L. Elbow	Joint center
22 - 24	L. Wrist	Joint center
25 – 27	L. Grip Center	Virtual point
28 – 30	L. Hand	Skin surface
31 – 33	R. Shoulder	Joint center
34 – 36	R. Elbow	Joint center
37 – 39	R. Wrist	Joint center
40 – 42	R. Grip Center	Virtual point
43 – 45	R. Hand	Skin surface
46 – 48	L. Hip	Joint center
49 – 51	L. Knee	Joint center
52 – 54	L. Ankle	Joint center
55 – 57	L. Toe of Foot	Virtual point
58 – 60	R. Hip	Joint center
61–63	R. Knee	Joint center
64 – 66	R. Ankle	Joint center
67 – 69	R. Toe of Foot	Virtual point
70 – 72	L. Hand	Forces
73 – 75	L. Hand	Moments
76 – 78	R. Hand	Forces
79 – 81	R. Hand	Moments
82	#	End mark

LLOC File filename.lloc

Value	Anatomical Location	Attribute
1-3	L. Wrist	Joint center
4-6	R. Wrist	Joint center
7 – 9	L. Ankle	Joint center
10 - 12	R. Ankle	Joint center
13 – 15	L. Shoulder	Joint center
16 – 18	R. Shoulder	Joint center
19 – 21	L. Hip	Joint center
22 - 24	R. Hip	Joint center
25	Support Selection	Integer
26 – 28	L. Hand	Forces
29 - 31	R. Hand	Forces
32	#	End mark

Support Selection: Integer 0-3, (0=Both Feet, 1=Left Foot, 2=Right Foot, and 3=No Feet)

The wrists and ankles locations are required. Shoulders and hip locations are optional (input as zeros if unknown). The posture will be predicted based on wrist and ankle locations and then will utilize any given shoulder or hip locations.

10.4 PREDICT REACH MOTION

The *Animation* | *Predict Reach Motion* command was available in a previous version but is being updated. It will be based upon data collected and analyzed at the U of Michigan Center for Ergonomics under the Human Motion Simulation (www.HUMOSIM.org) research project.

Currently the prediction dialog, Figure 10.5, allows a motion to be predicted using *linear interpolation* between the body segment angles of two entered postures. The two entered postures could also be predicted using the static posture prediction capability of 3DSSPP.

The three windows at the top of the dialog display are the same as for the HUMOSIM model dialog and serve the same purpose. The interpolation parameters are below the display windows.

The three graphic windows default to the avatar view but can be set to any of the stick figure views (Figure 10.6).

Final Frame	
Front view	•
ObliqueView	
TopView	
Front View	
Side View	

Figure 10.6: Figure graphic choices

10.4.1 Initial and Final Postures

The initial and final motion postures are set using previously defined frames. The previously defined frames must be the currently selected frame and the immediately following frame. If the immediately following frame is not defined then the created motion is simply a duplication of the starting frame.

Figure 10.5: Predict Reach Motion standing dialog

10.4.2 Motion Length

The motion length sets the time duration of the motion and can be specified in seconds or by the number of frames.

10.5 EXPORT AVI FILE

The *Animation* | *Export AVI File* command will create an avi movie file of the frames in the Animation Bar as appearing in one of the stick or avatar view windows (Figure 10.7). A filename dialog will allow the entery of a filename and location. Note that the frame rate is 25 per second and that avi viewers may not play the avi at that rate.

Figure 10.7: Movie Export Dialog

10.6 SET FRAMES/SECOND

They **Animation** | **Set Frames/Second** command can be used to change the default 25 frames per second to the desired number (Figure 10.8). Note that the playback speed is dependent upon the processing power of the computer.

Set Frames/Second For Animation	×
O Use default (25 frames/sec)	ОК
Custom	Apply
30 frames/second	Cancel

Figure 10.8: Movie Export Dialog

Chapter 11: REPORTS MENU COMMANDS

The **Reports Menu** (Figure 11.1) contains the many analysis options available in 3DSSPP. A task input summary report is also available which lists all of the input data entered by the user. Two additional options include commands for printing reports and exporting output data to a file.

When a report is selected, the report data is displayed in a new window overlaying the posture entry windows and it may be tiled as any other window. Its contents can be printed or copied to the clipboard using the *File Menu* commands or the title bar popup menu.

Changes in units, anthropometry, load, posture, etc., will automatically be reflected in any open report windows. Opening additional reports windows or activating any other window may *appear* to close an existing report window by hiding the previous report window, but no existing report windows are closed by this action. To close individual report windows, use the control menu on the report window's title bar. Each report contains a header block with basic information about the analyzed task. Included are the description information, frame number and name, anthropometry, hand loads, and hand locations. For all report screens the output can be toggled between English or Metric units by choosing **Task-Input | Metric** or **Task-Input | English** (Section 6.2). The windows do not have to be closed to change the units.

Clicking the right mouse button (right-clicking) on the title bar will open a context menu which is useful for printing and copying.

7.0.7 beta - Untitled	
Stick-Views Avatar-View Animation	Reports About
	Task Input Summary - Angles
	Task Input Summary - Forces
	Analysis Summary
	Localized Fatigue
	Lowback Analysis - 3D
	Lowback Analysis - Sagittal Plane
	Strength Capabilities
	Anthropometry
	Balance
	Center of Mass Locations
	Joint Forces
	Joint Locations
<u>à</u> 2	Joint Moments
• •	Posture (Local Angles)
	Strength Direction Vectors
	Print Reports
	Export Report Data

11.1 TASK INPUT SUMMARY REPORTS

The Task Input Summary (Figure 11.2) displays a summary of the data entered under the Task-Input Menu items including the:

- 1. Joint angles,
- 2. Hand locations,
- 3. Hand force magnitude and direction, and
- 4. Additional joint forces.

30 3DSSPP - Task Input Summary Report - Angles											
Description Company: Unknown C	Description Company: Unknown Company, Analyst: Unknown, Date: 11/30/18 Tagt: Untilled Tagk - Frame 0										
Task: Untitled Task - F Gender: Male, Percen	Frame 0 tile: 50th, He	ight: 69.4 i	n, Weight	: 190.4 lb			Hand Locations (in) Left	Right			
Lateral (X): -8.5 8.5 Horizontal (Y): 18.2 18.2											
							Vertical (Z): 25.5	25.5			
							Exertion Times (s)				
							Total Cycle Time	0			
							Exertions per Cycle	0			
							Exertion Duration	0			
Limb Angles (Deg)							Trunk Angles				
		Left			Right		- Angles (Degrees)			
	Horz	Vert	Rot	Horz	Vert	Rot	Flexion:	55			
Hand	104	-45	Ο	104	-45	0	Rotation:	0			
Forearm:	100	-50	Ŭ	100	-50	Ŭ	Lateral Bending:	0			
Upper Arm:	65	-65		65	-65		Pelvic Lateral Tilt:	0			
Clavicle:	-20	0		-20	0		Pelvic Axial Rotation:	0			
Upper Leg:	-90	-50		-90 -90	-50						
Foot	75	0		-30	0		Head Angles				
Toe:	75	Ō		75	Ō		Flexion:	55			
							Rotation:	0			
		200000	70516		huak tuta		Lateral Denuiny.	0			

Copyright 2018, The Regents of the University of Michigan - ALL RIGHTS RESERVED

				Lateral Horizontal Vertical Exertion Ti Total Cycl Exertions	(X): -8.5 (Y): 18.2 (Z): 25.5 mes (s) he Time per Cycle	8.5 18.2 25.5 0
				Exertion Ti Total Cyc Exertions	mes (s) le Time per Cycle	0
				Total Cyc Exertions	le Time per Cycle	0 N
				Exertions	per Cycle	0
						0
				Exertion D	uration	0
	Left			Right		
Horz	Vert	Lat	Horz	Vert	Lat	
: 18.2	25.5	-8.5	18.2	25.5	8.5	
Horz(Deg)	Vert(Deg)	Mag(lb)	Horz(Deg)	Vert(Deg)	Mag(lb)	
90	-90	10.0	90	-90	10.0	
ı)	Horz 18.2 Horz(Deg) 90	Lett Horz Vert 18.2 25.5 Horz(Deg) Vert(Deg) 90 -90 3DSSPP 7.0.	Lett Horz Vert Lat 1): 18.2 25.5 -8.5 Horz(Deg) Vert(Deg) Mag(lb) 90 -90 10.0 3DSSPP 7.0.5 Licensed to: 0	Lett Horz Vert Lat Horz 1): 18.2 25.5 -8.5 18.2 Horz(Deg) Vert(Deg) Mag(lb) Horz(Deg) 90 -90 10.0 90 3DSSPP 7.0.5 Licensed to: Chuck Woolley	Lett Hight Horz Vert Lat Horz Vert 18.2 25.5 -8.5 18.2 25.5 Horz(Deg) Vert(Deg) Mag(lb) Horz(Deg) Vert(Deg) 90 -90 10.0 90 -90 3DSSPP 7.0.5 Licensed to: Chuck Woolley	Lett Hight Horz Vert Lat Horz Vert Lat 1): 18.2 25.5 -8.5 18.2 25.5 8.5 Horz(Deg) Vert(Deg) Mag(lb) Horz(Deg) Vert(Deg) Mag(lb) 90 -90 10.0 90 -90 10.0 3DSSPP 7.0.5 Licensed to: Chuck Woolley

11.2 ANALYSIS SUMMARY REPORT

The **Analysis Summary** report (Figure 11.3) displays five areas of information: Hand Forces, Low Back Disc Compression, Percent Capable, Balance, Coefficient of Friction, and Localized Fatigue.

11.2.1 Hand Forces

The forces on the hand are listed as the vector components of the load projected onto the X, Y and Z axes and also as the resultant magnitude.

- A positive X-component indicates a task requiring a sideways push to the left while a negative Xcomponent indicates a task requiring a sideways push to the right.
- 2. If the task involves pulling towards the body, the Ycomponent will be positive if the task involves forward pushing, the Y-component will be negative.

3. If the task involves lifting, the Z-component of the hand forces will be negative (-); a positive Z-component (+) indicates a task using a downward push.

11.2.2 Percent Capable

The upper portion of the report below the report header is devoted to the strength capability of the selected gender and anthropometry at the major joints. The displayed value for each joint is the lowest value obtained from the strength capabilities calculated for the joint actions on the left and right side of the body. The torso value is the smallest of axial rotation strength, lateral bending strength and flexion/extension strength. All of the strength capability percentages can be viewed in the *Strength Capabilities* report described in Section 11.6.

11.2.2.1 Strength Limits

SDL and SUL are the Strength Design Limit and the Strength Upper Limit and, by default, correspond to the NIOSH Action Limit and Maximum Permissible Limit. Other limits may be set by the user (Section 7.3).

The SDL designation is delimited by the green to yellow transition in the bar graphs and is set at 99% for men or 75% for women. The SUL designation, on the other hand, is delimited by the yellow to red transition and is set at 25% for men or 1% for women. These values are discussed in Section 1.3.1.1.

Note, when performing an analysis for strength one should enter the maximum applied hand loads, not the average.

11.2.3 Disk Compression Force

The 3D low-back compression force at L4/L5 is displayed below the Percent Capable values. Both a numeric value and a bar graph are shown. The disc compression force predictions are compared with the Back Compression Design Limit (BCDL = 770 pounds or 3400 newtons) and the Back Compression Upper Limit (BCUL = 1430 pounds or 6400 newtons) as specified by NIOSH.

The back compression results should be interpreted with care. Refer to Section 1.3 for technical details on the algorithms used to determine the disc compression forces and the following sections for the NIOSH guidelines used to establish the strength capability and disc compression limits.

Note, when performing an analysis for strength one should enter the maximum applied hand loads, not the average.

11.2.3.1 Compression Limits

The 3DSSPP compares the low back compression values to the NIOSH recommended limits (Section 1.3.3.1). In the bar graphs the Back Compression Design Limit (BCDL) is delimited in the bar graphs by the green to yellow transition and the Back Compression Upper Limit (BCUL) is delimited by the yellow to red transition.

11.2.4 Localized Fatigue

The right side of the report lists the localized fatigue maximum limit values and the Exertion Duty Cycle input values and calculation. See Section 11.3 for the detailed report.

11.2.5 Leg Load and Balance

The leg load fraction and balance results are given at the bottom of the report. The "percentage load" refers to the fraction of total weight (body and load) supported by that leg. For example, if the task involves a forward leaning posture with the right foot forward, then the right foot might be expected to bear a greater fraction of the overall load. Conversely, for a lateral bending left posture, the upper torso weight and hand loads would be borne primarily by the left foot.

In addition to calculating the percent load on each foot, the program calculates the center of pressure (COP) of the forces applied to the supporting surfaces. For standing, these are the front and heel of the feet, and for sitting, these are the ischial tuberosities and back of the thighs or the feet.

The center of pressure is compared to the Basis of Support and the Functional Stability Region (green area) to determine if the balance condition is either ACCEPTABLE, CRITICAL, or UNACCEPTABLE. See Section 11.8 for definitions and the detailed balance reports.

11.2.6 Required Coefficient of Ground Friction

Any horizontal or lateral external forces will require corresponding opposite forces from the supporting surface. The ratio of horizontal forces to the sum of body weight and all external vertical forces is the <u>required minimum</u> coefficient of ground friction at the feet. This value is useful in analyzing pushing and pulling tasks for risk of falls due to slippage. It is the coefficient of *static* friction between the floor and the shoe soles required to prevent slippage given the posture and loads on the body. The actual coefficient of friction is dependent upon the type of shoe and floor surfaces and their conditions. This analysis is applicable to standing only.

11.3 LOCALIZED FATIGUE REPORT

The *Localized Fatigue* report (Figure 11.4) displays the calculated percent of maximum voluntary contraction (MVC) of the required effort at each joint (Moment Required/Population Strength from Strength Report). Percentages are calculated for the selected worker population strength percentile (5, 25, and 50 percentile corresponding to very weak, weak, and average strength workers). The upper extremities limit valves are listed as recommended by the ACGIH (2016), see Section 3.7.8. These limits are the maximum recommended exertion duty cycle listed as a percentage of job time (MAX% DC). Also listed is the maximum static (continuous) allowed exertion time. Values in red type are above the recommendations.

According to the ACGIH, when performing this analysis for localized fatigue one should enter the average hand loads as opposed to the maximum hand loads. Maximum hand loads are normally used for strength or back compression analyses.

The ACGIH limits only apply to the upper extremities. For other joints one will have to find estimates of localized muscular fatigue from other sources. See Rohmert (1973) and other more recent work.

Note also that if the %MVC is at or above 100%, then the maximum recommended exertion duty cycle listed as a percentage of job time (MAX%DC) is set to zero because the task exceeds the worker's strength.

) escriptio ompany: L ask: Untitl	n Jnknown Compa ed Task - Frame	iny, Analy 0	yst: Unknov	wn, Date: 12/	/04/19			Hand Forces (lb) Left: 10.0 Right: 10.0 Hand Locations (in)
ender: Ma	ile, Percentile: 5	Oth, Heig	ht: 68.4 in,	Weight: 192.	9 lb			Left Right
ommeric								Horizontal: 18.0 18.0 Vertical: 25.2 25.2 Lateral: -8.4 8.4
								Entered Exertion Values
Left					Right		Total Cycle Time (s) 60	
Population	n Strength		Weak (25	%tile)		Weak (25	%tile)	Exertions per Cycle 2
Percentile			Lir	nit		Li	iroit	Exertions Duration (s) 3
		2MVC	MAX%DC	Duration(s)	1 2000 N		Duration (s)) – Evertion Duty Cycle %
1. Crist	Elau/Eut	20	22.0	179	26	25.2	144	10.0
wiist	Flex/Ext	20	10.0	111	20	20.2	125	10.0
Ľ	Forearm Bot	1	100.0	1200	23	100.0	120	C Strength Population
	1 orodini Proc							C 5%tile Strength
Elbow	Flex/Ext	20	39.8	323	18	43.8	379	25%tile Strength
Shoulder	Humeral Rot	9	83.0	578	9	86.8	660	C 50%tile Strength
	Rot'n Bk/Fd	-	-	-	-	-	-	C 25 %tile Strength
	Abduc/Adduc	36	12.4	47	34	14.9	54	
		10	41.0	201				Apply Self-defined Percentile
Neck	Flex/Ext	15	41.0	231				1 Oroontilo
	Botation							
_		C1	2.2	05				%MVC = Percent of Maximum Voluntary Contraction for Task
Torso	Flex/Ext	61	2.3	30				Voluntary contraction for Fast
	Lati Bending	-	-					MAX%DC = Maximum Exertion
	notation							Duty Cycle Percentage Limit
Hip	Flex/Ext	60		30	60		30	Duration(s) = Maximum Static
Knee	Flex/Ext	13		469	13		469	Duration Limit
Ankle	Flex/Ext	24		316	24		316	

Figure 11.4: Fatigue report

11.4 3D LOW BACK ANALYSIS REPORT

The predicted disc compression force shown in the analysis summary screen is detailed in **3D** Low Back Analysis report (Figure 11.5). The report lists the L4/L5 disc compression force and can be compared to the NIOSH BCDL of 3400 newtons (770 pounds) and BCUL of 6400 newtons (1430 pounds.). See Section 1.3.3.1 for details on these NIOSH guidelines.

The 3D Low Back Analysis linear programming optimization algorithm calculates the L4/L5 disc rotated moments and forces and optimizes the resultant disc compression force on the disc as a result of a three dimensional analysis of the contractile forces expected from ten major muscles in the lumber region, upper body weight above the disc, and the hand forces. Refer to Section 1.3.3 for a diagram of the torso cross section at the L5/L4 lumbar level and additional technical details on the algorithm.

3DSSPP - 3D Lowback Analysis Report Description Company: Unknown Company, Analyst: Unknown, Date: 11/19/18 Task: Untitled Task - Frame 0 Gender: Male, Percentile: 50th, Height: 69.4 in, Weight: 190.4 lb Comment: Hand Forces (lb) Left: 10.0 Right Horizontal: 18.2 Vertical: 25.5 Lateral: -8.5										
Muscles								L4/L5 Disc		
Muscle		For	ces (lb)			Mom. Arm	s (in)	Compression (It)	
	Result	Shear	×	Y	Z	X	Y	Total	651	
L.Erector Spi.	257	0	0	0	257	-1.3	-2.3			
R.Erector Spi.	250	U	U	U	250	1.3	-2.3			
L.Rectus Abdo.	0	0	0	0	0	-1.6	3.3	Shear (lb)		
R.Rectus Abdo.	0	0	0	0	0	1.6	3.3	Total	71	
L.Internal Ob.	0	0	0	0	0	-4.6	1.4	Community		
R.Internal Ob.	1	1	0	1	1	4.6	1.4	Lomponents		
L.External Ob.	0	0	0	-0	0	-5.2	1.3	Anterior	71	
R.External Ob.	1	1	0	-1	1	5.2	1.3	Posterior		
L Latia Darri	EE	20	20	0	20	20	2.1	Lateral	-0	
R.Latis. Dorsi.	55	39	-35	Ŭ	39	-2.8	-2.1			
Ca	opyright 201	3 18, The Rej	DSSPP 7. gents of th	0.5 Lic e Univ	ensed to ersity of l	: Unprotected Michigan - ALL	. RIGHT			

Figure 11.5: 3D Low Back Analysis report

11.5 SAGITTAL PLANE LOW BACK ANALYSIS REPORT

The *Sagittal Plane Low Back Analysis* report (Figure 11.6) displays low-back data for the gender selected. Positive muscle force values or segment weights indicate the downward direction of the forces acting on the vertebral disc. Shear forces on the vertebral disc are due to the upper body weight, posture, and the horizontal hand forces. When appropriate and known +/- one standard deviation is displayed.

The L5/S1 disc compression force analysis is based on a model using the contraction forces from the Erector Spinae and Rectus Abdominus muscles. Although this yields acceptable results for symmetric lifts in the sagittal plane, such results may underestimate the disc compression force generated in asymmetric lifting. Because asymmetric lifts require recruitment of additional torso muscles, large asymmetric muscle activities and loads may be created about the spine. In these cases, the use of the *3D Low-back Analysis* is recommended. For further details on the L5/S1 model, refer to Section 1.3.2.

11.5.1 Estimated L5/S1 Ligament Strain

At the bottom of the report, the estimated L5/S1 ligament strain for the gender selected is displayed. This represents the strain in the lumbodorsal fascia, which is attached between the L5 and S1 vertebrae and plays a major role in resisting forward flexion. Since the observed elastic limit for the lumbodorsal fascia is 30%, estimated L5/S1 ligament strain values which exceed 30% may indicate risk for injury. See Anderson et al (1985), Anderson (1983), Bazergui et al (1978), and Farfan (1973).

36 3DSSPP -	Sagittal Plane Lowback	Analysis				×					
Description Company: I Task: Untit Gender: Ma Comment:	n Unknown Company, Analys Ied Task - Frame O ale, Percentile: 50th UNIG	Hand Forces (lb) Left: 10.0 Righ Hand Locations (in) Lef Horizontal: 15.8	nt: 10.0 t Right 3 15.8								
					Vertical: 24.4 Lateral: -8.4	24.4 8.4					
	on Force at L5/S1:			Shea	ar Force at L5/S1						
Total Con	npression (Ib):	783	+/- 57	To	otal Shear (Ib):	91					
Co	mponents				Components						
	Erector Spinae:	731	+/- 57		Sagittal Plane	: 91					
	Rectus Abdominus:	0	+/- 0		Frontal Plane:	0					
	Abdominal:	-25									
	Hand Loads:	13									
	Upper Body Weight:	64		Estir	nated Ligament Strain (%	;): 16					
с	3DSSPP 7.0.0 Licensed to: Unprotected Copyright 2016, The Regents of the University of Michigan - ALL RIGHTS RESERVED										

Figure 11.6: Sagittal Plane Low Back Analysis report

11.6 STRENGTH CAPABILITIES REPORT

The *Strength Capabilities* report (Figure 11.7) outputs the results of the strength model.

The Required Moments (torque) produced by the load and body weight for each joint are calculated using a biomechanical model based on a static linkage algorithm and are dependent upon the anthropometry, posture, and hand load.

The Population Mean Strengths and their standard deviations are computed from empirical mean strength equations. The equations are based on experimental strength studies by Stobbe (1980); Shanne (1972); Burgraaff (1972); Clarke (1966); Smith and Mayer (1985); Mayer et al. (1985); Kishino et al. (1985); Kumar, Chaffin, and Redfern (1985); and many others. The Population Strength Means depend upon the gender and posture. They are not stratified by height or weight (anthropometry) because the correlation is weak. Also there is currently insufficient data to stratify the strength means by age.

The Percent Capable is the percentage of the population with the strength capability to generate a moment larger than the resultant moment. It is calculated as a function of the resultant moment, mean strength, and standard deviation of the mean strength using a normal distribution as follows:

Percent Capable =

 $\phi(Z) = [(2^{-1/2})/\pi] f^{z} \exp(-x^{2}/2) dx$

where Z = {Required Moment at joint -

Mean Strength} / Std Dev of Strength.

3DSSPP -	Strength Ca	pabilities								_	
Description Company: U Task: Untitl Gender: Ma	i Jnknown Com Jed Task - Frar ale, Percentile:	pany, Ana ne 0 : 50th U	alyst: Unknov NIQUE . Heid	wn, Date: aht: 69.4 ii	06/23/1) n. Weighl	6 :: 190.5	іЬ	Hand Fo	rces (lb)— : 10.0 F cations (ir	Right: 10.0 i) Left Bight	
Comment:								Horizon Vertical Lateral:	ital: 1 : 2	5.8 15.8 24.4 24.4 8.4 8.4	
	Left										
		Re	quired	Popula	tion Stren	igth	Re	quired	Popula	lation Strength	
		Moment (in∘lb)	Muscle Effect	Mean (in Ib)	SD (in·lb)	Cap (%)	Moment (in·lb)	Muscle Effect	Mean (in·lb)	SD Cap (in·lb) (%)	
Wrist Ulna	Flex/Ext ar/Radial Dev Forearm Rot	17.8 -20.1 -0.0	EXTEN RDLDEV 	67.2 90.5	21.5 29.0 	98.9 99.2 100	17.8 -20.1 -0.0	EXTEN RDLDEV 	72.3 97.4 	23.1 99.1 31.2 99.3 100	
Elbow Shoulder	Flex/Ext Humeral Rot Rot'n Bk/Fd Abduc/Adduc	-89.7 -34.4 1.0 -219.7	FLEXN LATERL BACKWD ABDUCT	528.0 342.6 615.1 620.0	129.7 77.6 179.7 152.6	100 100 100 99.6	-89.7 -34.4 1.0 -219.7	FLEXN LATERL BACKWD ABDUCT	567.8 368.4 661.4 666.6	139.5 100 83.4 100 193.2 100 164.0 99.7	
Neck	Flex/Ext Lat'l Bending Rotation	-78.6 0.0 0.0	EXTEN 	199.6 	75.2 	94.6 100 100					
Torso	Flex/Ext Lat'l Bending Rotation	-1807.0 0.0 0.0	EXTEN 	3526.8 	1111.2 	93.9 100 100					
Hip Knee Ankle	Flex/Ext Flex/Ext Flex/Ext	-945.8 127.9 132.5	EXTEN EXTEN FLEXN	1963.0 1467.8 1228.2	788.1 513.7 406.2	90.2 99.5 99.7	-945.8 127.9 132.5	EXTEN EXTEN FLEXN	1963.0 1467.8 1228.2	788.1 90.2 513.7 99.5 406.2 99.7	

11.7 ANTHROPOMETRY REPORT

The **Anthropometry** report (Figure 11.8) displays anthropometric data including: the link lengths, the center of gravity distances, and the link weights. The lower arm shown in the first row combines the hand and lower arm links. Hence, the hand weight is included in the link weight. The center of gravity distance for the elbow is similarly adjusted. As noted by the citation, the L5 to shoulder link includes the head and neck weight <u>but not the head and neck length</u>: the length displayed is that of the L5/S1 to the center between the shoulders. The Hip-to-L5 link represents the pelvic bone and surrounding muscles to the L5/S1 disc. Finally, the center of gravity distances are measured from the end of the link which is internally closest to the feet; the proximal end for the upper extremity and the distal end for the lower extremity.

Near the end of the report is the name of the population used for the analysis as set in the Anthropometry Dialog (Section 6.5).

Description Company: Unknown Company, Ana	lust: Unknown	Date: 10/0/	1/17		Hand Forces (lb)) Right:	10.0
Task: Untitled Task - Frame 0	-Lu co 4 : \./				Hand Locations	(in)	
Comment:	gnc 69.4 in, W	eight: 190.5	ID			Left	Rigi
Conners.					Horizontal: Vertical: Lateral:	18.2 24.5 -8.5	18. 24. 8.
Link	Lend	ıth (in)	CG-to-Pro	ximal End	Wei	aht (lb)	
	-	 	Dis	tance (in)		- · · ·	
	Left	Hight	Left	Right	Left	Right	
Hand Grip Center:	3.5	3.5					
Hand With Fingers:	7.5	7.5	2.7	2.7	1.2	1.2	
Lower Arm:	10.5	10.5	4.4	4.4	3.3	3.3	
Upper Arm:	13.0	13.0	6.9	6.9	5.5	5.5	
ead Radius(Tragion/Nasion Link):	4.0		n/a		n/a		
Head,Base to Tragion:	1.4		2.4		11.1		
Upper Neck:	2.8		1.4		2.0		
LowerNeck:	2.8		1.4		2.0		
Torso, L5 to C7T1:	17.5		12.5		64.5		
L5 and Above:					99.4		
Diaphragm Moment Arm:	5.9						
Pelvis, Hip to L5:	3.8		1.9		21.0		
Hip to Hip:	7.0				n/a		
Upper Leg:	17.9	17.9	10.9	10.9	24.2	24.2	
Lower Leg:	15.9	15.9	9.4	9.4	8.1	8.1	
Foot Length:	10.7	10.7	6.1	6.1	2.7	2.7	
* Population:	Production 7	.0.0					
		CL 1 (A					

Figure 11.8: Anthropometry report

11.8 BALANCE REPORTS

The **Balance** reports (Figures 11.9 and 11.10) display the body support and balance details for standing and seated modes. The stability condition as well as intermediate calculation values are listed and are most helpful in validating the balance calculations. To select the type of support, seated or standing, see the Support Selection Dialog.

11.8.1 Center of Body Mass Calculation

The *Center of Body Mass* is defined as the center of body mass projected downward and can also be called *Center of Gravity (CoG).* In 3DSSPP this is calculated for the body part masses only, not including the mass of objects which might be in the hands. No external forces or moments are included. The Center of Body Mass is shown on the balance graphic as a yellow dot. The reported measurements are the location of the center with respect to the center of ankles as projected onto the supporting surface.

🐻 3DSSPP - Standing Balance Report	
Description Company: U of M, Analyst: CBW, Date: 01/30/20 Task: Untitled Task - Frame 0 Population: Production 7.0.0 Gender: Male, Percentile: Data Entry, Height: 74.1 in, Weight: 275.6 lb Comment:	Hand Locations (in) Left Right Horizontal: 15.92 18.21 Vertical: 24.78 32.81 Lateral: -7.61 7.76 Hand Forces (lb) Left: 20.00 Right: 20.00 Support Forces (lb) Left: 25.05 Bight: 109.00
Locations of Centers (in) x y Dot Center of Pressure 0.07 3.18 Red Center of Gravity 0.09 1.25 Yellow	Heel: Left: 100.46 Right: 31.22 Foot Center: Left: 0.00 Right: 0.00 IT: Left: 0.00 Right: 0.00 Seat Edge: Left: 0.00 Right: 0.00 SeatBack: Y: 0.00 Z: 0.00
Left Foot Force -4.07 -2.26 L Purple Right Foot Force 5.25 10.00 D Purple	
Base of Support (in) Dist to Front: 6.2 Dist to Back: 5.2 Dist to Right: 4.2 Dist to Left: 6.0	e i
Residual Support Moments (in-lb) X Y Z 0.00 0.00 0.00	Stability Balance: Acceptable Leg Loads (%) Left: 56% Right: 44%
Maximum Balance Moments (in-lb)	Right
X Y Toe: 166.29 1812.09 Heel: -3127.46 929.54	Z X Y Z 0.00 2935.16 -1816.73 -0.00 0.00 -583.91 -1004.29 -0.00

11.8.2 Center of Pressure Calculation

The *Center of Pressure (COP)* is defined as the center of the supporting forces. It is calculated similar to the COG, but includes all external forces and moments as well as the body part masses. The Center of Pressure is shown on the balance graphic as a red dot. The reported measurements are the location of the center with respect to the center of ankles. As projected onto the supporting surface.

🐻 3DSSPP - Seated Balance Report	×
Description Company: U of M, Analyst: CBW, Date: 01/30/20 Task: Untitled Task - Frame 0 Population: Production 7.0.0 Gender: Male, Percentile: Data Entry, Height: 74.1 in, Weight: 275.6 lb Comment: Locations of Centers (in) x y Dot Center of Pressure 0.00 12.82 Red	Hand Locations (in) Left Right Horizontal: 24.60 24.60 Vertical: 16.82 16.82 Lateral: -8.49 8.49 Hand Forces (lb) Left: 20.00 Right: 20.00 Foot Support Forces (lb) Toe: Left: 0.00 Right: 0.00 Heel: Left: 0.00 Right: 0.00 Foot Center: Left: 133.73 Right: 133.73 IT: Left: 24.13 Right: 24.13 Seat Edge: Left: 0.00 Right: 0.00
Center of Gravity 0.03 11.31 Yellow Left Foot Force 0 0 L Purple Right Foot Force 0 0 D Purple Base of Support (in) Front Boundary 33.52 Left Boundary 7.52 Right Boundary 7.52	SeatBack: Y: 0.00 Z: 0.00
Residual Support Moments (in-lb) X Y Z -2477.24 0.00 -0.00	Stability Balance: Acceptable Leg Loads (%) Left: 50% Right: 50%
Maximum Balance Moments (in-lb)	Right Z X Y Z 0.00 .2779.40 .862.11 .0.00
Seat Front: -1218.33 1305.75 Center of 3599.17 1181.45	0.00 -1218.33 -1305.75 -0.00 0.00 3599.17 -1181.45 -0.00

Figure 11.10: Seated balance report

11.8.3 Base of Support

For balance to be obtained the COP must be contained within a stability region defined by the supporting surfaces. Two stability regions are determined and considered. The *Basis of Support* (BOS) is a region defined by the size and location of the supporting surfaces. For example, in standing mode the feet can only support a posture if the Center of Pressure is within the outline of the feet, otherwise the person will fall over. However it has been shown that people do not normally let the Center of Pressure get close to the edge of the BOS, supposedly as a safety factor (Holbein-Jenny, et al., 2007). Therefore a *Functional Stability Region* (FSR) has been defined and experimentally determined within which people tend to keep the Center of Pressure. Between the perimeter of these two regions is a critical region of balance where a person may feel insecure.

If the COP is outside the Basis of Support, then there is no solution to support the body and the loads on the legs, forces and moments of the leg joints, and the calculated leg strengths are not valid. Question marks will appear adjacent to the strength bars in the status window.

11.8.4 Center of Pressure Graphic

The balance report includes a graphical depiction of the COP, COG, BOS boundary, and the supporting surfaces, see Figure 11.11. The graphic is also included in the Status Window of the main screen. The COP appears as a small red dot. The COG appears as a small yellow dot.

For the standing case the graphic shows the feet, the yellow BOS region, and the green FSR region. The images of the feet will change as the posture of the lower extremity is changed and the BOS will automatically adjust.

For the seated case the graphic shows the pelvis and feet if feet support has been selected in the Support Selection Dialog. The BOS region is depicted by the outer edge of the yellow band. The yellow band itself is the critical balance area. The FSR is the area within the inner edge of the yellow band. They will adjust according to the type of seat support selected. The small black dots show the location of the ischial tuberosities, which are the lowest most bone surfaces of the pelvis. The images of the pelvis and feet will change as the posture of the lower extremity is changed and the BOS boundary will automatically adjust.

Figure 11.11: Seated balance graphic: standing, seated with no foot support (on a stool), seated with foot support, and seated without foot support (on an office chair)

11.8.5 Stability Balance Condition

The stability balance condition depends upon the location of the Center of Pressure with respect to the Base of Support. The output is either *Acceptable*, *Critical*, or *Unacceptable*.

- Acceptable CP Balance: The Center of Pressure location is within the FSR and the posture is stable.
- *Critical CP Balance*: The Center of Pressure location is outside the FSR and yet within the BOS. The posture is stable but the person will not feel secure.
- Unacceptable CP Balance: The Center of Pressure is outside the BOS and posture cannot be maintained nor can the 3DSSPP calculate a solution for the leg loads or strengths.

11.8.6 Leg Loads

The reported Leg Load is the percentage of total pelvic resultant force supported by each leg. It is calculated based upon the estimated support forces from Section 11.8.9. It most often is only applicable to standing support cases.

11.8.7 Support Forces

These are the reported foot forces from the supporting surface. These forces are completely reported in the Forces Report.

11.8.8 Residual Support Moments

The loads on the lower extremity joints are calculated bottom up starting with the estimated external forces. To be in balance the total moments at the pelvis must be zero. Excess pelvic resultant moments that cannot be offset by the moments from the supporting forces are reported as residual support moments. Again these must be zero to be in balance. The magnitude and direction of the residual support moments indicate the magnitude and direction of the balance problem.

11.8.9 Maximum Balance Moments

The 3DSSPP uses a top down calculation approach; forces and moments are summed from the hands "down" to the pelvis. To be balanced the pelvic resultant forces and moments must be offset by forces and moments from the legs and supporting surfaces. The model estimates external supporting forces and locations based on total moment magnitudes. They are reported as the Maximum Balance Moments. Note that the calculation of the external support forces is an indeterminate problem with multiple possible solutions if any.

11.9 CENTER OF MASS LOCATIONS REPORT

The *Center of Mass Locations* report (Figure 11.12) lists the centers of mass of each body segment and of the whole body according to the current measurement center. External forces

and torques are not included in the calculations. The X-axis extends laterally from the origin with positive to the subject's right. The Y-axis extends from the origin to the front and the back of the body with positive being forward. Lastly, the Z-axis extends vertically from the origin with positive upwards. This definition follows the right hand rule.

escription	Hand Forces (lb)					
11/15/19	,ompany, Ai	naiyst. Oniti	Hand Loc	ations (in) –	10.00	
Task: Untitled Task - I Gender: Male, Person	Frame () Movi E Mulai III		Lei	ft Right		
Cenuer, Male, Percen 192.9 lb Comment:	Lateral (X Horizonta Vertical (2): -8.3: I (Y): 17.9: Z): 25.1!	9 8.39 5 17.95 5 25.15			
Locations (in)						
		Left			Right	
	×	Y	Z	×	Ŷ	Z
Hand:	-8.52	17.44	25.68	8.52	17.44	25.68
Lower Arm:	-9.65	11.80	32.18	9.65	11.80	32.18
Upper Arm:	-9.05	6.74	40.98	9.05	6.74	40.98
Head:	0.00	10.00	54.55			
Upper Neck:	0.00	7.11	52.21			
Lower Neck:	0.00	5.31	50.15			
Torso:	0.00	1.21	45.42			
Pelvis:	0.00	-7.07	34.27			
Upper Leg:	-3.45	-2.82	27.13	3.45	-2.82	27.13
Lower Leg:	-3.45	2.39	12.77	3.45	2.39	12.77
Foot:	-4.15	2.60	1.24	4.15	2.60	1.24
Whole Body:	0.02	1.06	34.95			

Figure 11.12: Center of Mass Locations report

11.10 JOINT LOCATIONS REPORT

The *Joint Locations* report (Figure 11.13) lists the calculated locations of each joint, hand, and supporting surface. The locations (x, y, z) are referenced to the current measurement coordinate center. The default center for standing mode cases is at the *Center of the Feet*. (Center of the ankles projected downward to the floor support of the lowest foot.) For seated mode cases the default center is at the Seat Reference Point (SRP). The SRP is automatically calculated from the intersection of the trunk and upper leg angles and is displaced perpendicular to the body segments by population factors which are fraction of stature.

The X-axis extends laterally from the origin with positive to the subjects right. The positive Yaxis extends forward from the origin and the positive Z-axis extends vertically from the origin with positive upwards. This forms a right-had coordinate system.

Note that foot support locations are calculated at the shoe support surface; not the foot skin surface. This is a change from previous versions.

3DSSPP - Joint Location	ns Report						
Description Company: Unknown Comp 11/05/19	oany, Analy	st: Unknow	n, Date:		land For Left:	ces (lb) — 10.00 Rig	ıht: 10.00
Task: Untitled Task - Fram	ne O				ianu Luu	auons (in) Le	ft Right
Gender: Male, Percentile:	50th, Heigh	it: 68.4 in, V	Veight:		Horizopt	∍ŀ 179	6 1796
Comment:					Vertical: Lateral:	25.1 -8.4	6 25.16 0 8.40
Locations (in)							
	L	Left		L		Right	
	×	Ŷ	2		×	Y	2
Hand:	-8.40	17.96	25.16		8.40	17.96	25.16
Wrisc Elbow:	-8.98	9.07	27.08		8.98	9.07	27.58
Shoulder:	-7.84	4.15	47.12		7.84	4.15	47.12
Tragion:	0.00	9.17	54.02				
Nasion:	0.00	12.44	52.62				
C1:	0.00	8.00	53.26				
L3/L4: C7/T1·	0.00	6.21 A A2	51.19 49.12				
SCI-	0.00	6.21	45.72				
15/\$1	0.00	-6.87	40.20 36.12				
Hip Center:	0.00	-7.27	32.44				
Hip:	-3.45	-7.27	32.44		3.45	-7.27	32.44
Knee:	-3.45	4.05	18.95		3.45	4.05	18.95
Ankle:	-3.45	0.00	3.84		3.45	0.00	3.84
Foot Support Locations		Left		Γ		Bight	
	×	Y	Z		X	Y	Z
Heel of Foot:	-2.94	-1.91	0.00		2.94	-1.91	0.00
Center of Foot:	-3.45	0.00	0.00		3.45	0.00	0.00
Ball of Foot:	-4.97	5.65	0.00		4.97	5.65	0.00
Toe of Foot:	-5.68	8.29	0.00		5.68	8.29	0.00
Center between Feet:	0.00	0.00	0.00				
Center between Toes:	0.00	5.65	0.00				
Seat Support Locations		1.4				D: 1 -	
		Left				Right	
IT Center	^	r 	۷		X	ï	2
Seat Back Center:							
Seat Reference:							
Forward Seat Center:							
Forward Seat:							
Ischial Luberosities:							

11.11 JOINT FORCES REPORT

The *Joint Forces* report (Figure 11.14) lists the resultant forces produced by the loads and body weight in the direction of the main reference axes (x, y, and z) at each joint. The forces reported do not include the internal muscle forces or abdominal pressure. Support forces are also reported and are defined as forces being applied to the body. The Xaxis extends

laterally from the origin with positive to the subject's right. The Y-axis extends from the origin to the front and the back of the body with positive being forward. Lastly, the Z-axis extends vertically from the origin with positive upwards. This definition follows the right hand rule.

30 3DSSPP - Joint Forces	Report						×
				1 – H	land Force	s (lb) —	
Company: Unknown Co Date: 11/05/19 Task: Untitled Task - Fr	Company: Unknown Company, Analyst: Unknown, Date: 11/05/19 Task: Untitled Task - Frame 0						ght: 10.00
Gender: Male, Percentil Weight: 193.0 lb	ГН	land Locat	ions (in)-				
Comment:			Le	eft Right			
		Horizontal: 17.96 17.96 Vertical: 25.16 25.16 Lateral: -8.40 8.40					
Joint Forces (lb) Due to	o Body We	eight and E	xternal App	lied l	_oads		
		Left		[Right	
	X	Y	Z		X	Y	Z
Hand: Wrist: Elbow: Shoulder:	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	-10.00 -11.20 -14.54 -20.08		0.00 0.00 0.00 0.00	0.00 0.00 0.00	-10.00 -11.20 -14.54 -20.08
Head	0.00	0.00	0.00				-20.00
C1: C3/C4:	0.00	0.00	-11.20 -13.22 15.25				
L4/L5: L5/S1:	0.00	0.00	-115.15				
Hip: Knee: Ankle: Ball of Foot:	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	-71.04 -95.58 -103.80 0.00		0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	-71.04 -95.58 -103.80 0.00
Support Forces (lb) Du	e to Body	Weight an	d External A	Applie	ed Loads-		
		Left				Right	
	×	Y	Z		Х	Y	Z
Heel of Foot:	0.00	0.00	60.37		0.00	0.00	60.37
Toe of Foot:	0.00	0.00	46.18		0.00	0.00	46.18
Center of Foot:							
Forward Seat Edge:							
Ischial Tuberosity: Backrest:							
Copyright 2019, The F	3DSSPP Regents of	7.0.7 Lice the Unive	nsed to: Ur rsity of Micł	nprote nigan	ected - ALL RIGI	HTS RE	SERVED

Figure 11.14: Forces report

11.12 JOINT MOMENTS REPORT

The *Joint Moments* report (Figure 11.15) lists the resultant moments produced by the loads and body weight about the main reference axes (x, y, and z) at each joint and support surface. The moments reported here do not include the moments produced by the internal muscle forces or abdominal

pressure. The X-axis extends laterally from the origin with positive to the subject's right. The Y-axis extends from the origin to the front and the back of the body with positive being forward. Lastly, the Zaxis extends vertically from the origin with positive upwards. A negative (-) moment value indicates a clockwise moment about the given joint axis; a positive moment represents a counterclockwise moment. This definition follows the right hand rule.

Description Company: Unknow 11/05/19 Task: Untitled Task Gender: Male, Perc 193.0 lb Comment:	n Company, / : - Frame 0 :entile: 50th,	Hand Force Left: 10 Hand Locati Horizontal: Vertical: Lateral:	s (lb) .00 Right: ions (in) Left 17.96 25.16 -8.40	10.00 Right 17.96 25.16 8.40		
– Moments (in-lb) Du	ue to Body W	eight and Ext	ernal Applied	d Loads		
			Right			
	×	Y	Z	×	Y	Z
Hand: Wrist: Elbow: Shoulder:	0.00 -25.67 -108.02 -193.88	0.00 6.40 20.92 -19.12	0.00 0.00 0.00 0.00	0.00 -25.67 -108.02 -193.88	0.00 -6.40 -20.92 19.12	0.00 0.00 0.00 0.00
Head: C1: C3/C4: C7/T1:	0.00 -22.40 -44.30 -69.83	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00			
L4/L5: L5/S1: Hip Center:	-1498.33 -1600.22 -1653.20	0.00 0.00 0.00	0.00 0.00 0.00			
Hip: Knee: Ankle: Heel of Foot: Ball of Foot:	-826.60 145.95 -260.71 0.00 0.00	-69.86 -69.86 -69.86 0.00 0.00	0.00 0.00 0.00 0.00 0.00	-826.60 145.95 -260.71 0.00 0.00	69.86 69.86 69.86 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Copyright 2019,	3DSS The Regents	PP 7.0.7 Lice of the Univer	nsed to: Unp sity of Michi	protected gan - ALL RIGH	TS RESER	VED

Figure 11.15: Moments report
11.13.1 Range of Joint Motion Limits

11.13 POSTURE REPORT

The **Posture** report (Figure 11.16) displays the limb and torso angles calculated by vector analysis of the input posture. They are the included joint angles (local angles) often used to describe postures. These angles are required as parameters in the empirical strength prediction equations. Since the population percent capable values are highly sensitive to variations in the mean strengths and standard deviations, these corrected angles are used as independent variables in the empirical strength equations to reduce the mean strength variability. Note that the torso and pelvic angles combine to form the entered trunk flexion angle and that a lateral trunk rotation will induce a torso rotation if the trunk is also flexed. The posture report also lists the range of motion limits for each direction of joint rotation. If a posture is entered such that a joint angle is outside the range of motion for the joint then the text of the values on the report and the joint marker on the stick-view graphics are set to red. The calculation of some angles may be indeterminate for certain postures, for example Shoulder Humeral Rotation when the Elbow Included angle nears 180 degrees. In this case exceeded limits may be ignored as an anomaly. Rotation limits can be altered by the user, see Section 6.5.8.7.

Description						- Hand Ford	oo (lb)		
Company: Unknown Company, Analyst: Unknown, Date: 11/05/19						Left: 10.00 Right: 10.00			
Task: Untitled Task - Frame 0						Hand Locations (in)			
Gender: Male, Percentile: 50th, Height: 68.4 in, Weight: 192.9 lb Comment:							Lef	t Right	
ooninone.						Horizonta	al: 17.95	17.95	
						Lateral:	-8.39	8.39	
Limb Angles (degrees)					Head and Trunk Angle	es (degrees)-			
	Calculated		Bange of Motion		(La	lculated	Bange (of Motion	
	Posture	e Angles	Lim	its	Post	ure Angles	Limits		
Wrist	Left	Right	Min	Max			Min	Max	
Flevion	0	0	-63	0	Head/Torso:				
Extension	1	1	0	88	Flexion/Extension	U	-56	4	
Elitension Ullinar deviation	, 0	, 0	0	20	Axial Rotation	0	-63 04	5. D	
Padial deviation	.6	.6	.21	0	Lateral Benuing	U	-34	J.	
	-0	-0	-21		Elevion/Evtension	0	.12	1(
Forearm Potation	0	0	.90	an			-12		
Elbow Included	156	156	-30	190	Upper Neck/Lower Ne	оск:	24		
Shoulder Vertical	64	64 F4	15	100	Flexion/Extension	0	-34	30	
Shoulder Horizontal	79	79	.100	180	Axial Rotation	0	-03	10	
Humaral Potation	50	50	.5	100	Lateral benuing	U	-15	13	
Humeral Hotation	50	50	-0	100	Lower Neck/ Lorso:		10		
Upper leg:					Avial Distation	0	-10	10	
Hip Included	105	105	0	210	Axial Rotation	0	-10	10	
Hip Vertical	46	46	U	180	Taxa (Daluis (LEC1))	U	-10	15	
Hip Horizontal	90	90	-120	120	Flevion / Evtension	49	.90	100	
Femoral Rotation	0	0	-90	90	Auial Potation	43	-30	101	
Lower leg:					Axial Hotation	0	-45	4:	
Knee Included	125	125	15	180	Datuia:	U	-40	40	
Ankle Included	76	76	72	138	Felvis:	c	00		
Ankle Int/Ext Rotation	16	16	-10	30	Forward Rotation	0	-30	90	
Toe:					Lateral Hotation	10	-45	45	
Pall Flouion / Eutonaion	0	0	-40	an	LOST Porward Fill	40			

Copyright 2019, The Regents of the University of Michigan - ALL RIGHTS RESERVED

11.14 STRENGTH DIRECTION VECTORS REPORT

The *Strength Direction Vectors* report (Figure 11.17) displays the unit vectors for the directions of the strength moments in the main reference (global) coordinate system.

The X-axis extends laterally from the origin with positive to the subjects right. The Y-axis extends from the origin to the front and the back of the body with positive being forward. Lastly, the Z-axis extends vertically from the origin with positive upwards.

- Description Company: Unknown Cor Tasla United Tasla For		-Hand Forces (Ib Left: 10.0) Right: 10	.0				
Gender: Male, Percentile	ь 🎼	- Hand Locations	∶(ın) Left R	iaht				
Comment:			-		Horizontal: Vertical: Lateral:	32.6 3 -8.3 -8.4	2.6 -8.3 8.4	
Moment Direction Vector	210							
[Left				Right			
	Х	Y	Z	×	Y		Ζ	
Wrist								
Flex/Ext	-0.772	-0.352	-0.529	-0.772	0.352	0.	529	
Ulnar/Radial Dev	0.612	-0.637	-0.47	0.612	0.637		0.47	
Forearm Rot	-0.171	-0.686	0.707	-0.171	0.686	-0.	707	
Elbow Flex/Ext Shoulder	0.612	-0.637	-0.47	0.612	0.637	I	0.47	
Rot'n Bk/Fd	0.033	-0.877	-0.479	0.033	0.877	0.	479	
Abduc/Adduc	0.983	0.114	-0.142	0.983	-0.114	0.	142	
Humeral Rot	0.179	-0.467	0.866	0.179	0.467	-0.	866	
Neck		_						
Flex/Ext	1	0	0					
Lat'l Bending	U	0.628	-0.778					
Hotation	U	0.778	0.628					
LOS I	-	0	0					
Flex/Ext	0	0,000	0 770					
Lati Bending	0	0.628	-0.778					
notation	U	0.776	0.620					
Hip Flex/Ext	1	0	0	1	0		0	
Knee Flex/Ext	1	0	0	1	0		0	
Ankle Flex/Ext	0.966	0.259	0	0.966	-0.259		0	
Соругі	ght 2016, The I	3DSSPP 7.0.0 Regents of the Ur	Licensed to: Unpre hiversity of Michiga	otected an - ALL RIGH	TS RESERVED			

Figure 11.17: Strength Direction Vectors report

11.15 PRINT REPORTS COMMAND

A series of reports can be printed using the **Reports** | **Print Reports** command (Figure 11.18). The selected reports will print in the order the are listed. Use *Print Setup* to change printers or printer options. The *Select All* and *Select None* buttons can speed the selection of desired combinations of reports.

Figure 11.18: Print Reports Dialog

11.16 EXPORT REPORT DATA

Through **Reports | Export Report Data**, selected data generated by 3DSSPP can be saved as an external text file for export to and further analysis in spreadsheet or other application software (Figure 11.19). Data can be exported from one selected frame or for a range of selected frames (use the SHIFT Key to select the end of a range of frames). Other than this data, no reports can be exported as text files. The text file can be either tab or comma delimited and the data can be appended to a file or overwrite data in a file. Column headers with units can be included as an additional line if desired. This defaults to ON.

Export Report Data							
All Open Reports No	ne						
Select any combination of output:							
Summary Results							
🔽 Strength Capabilities							
🔽 Low Back							
✓ Localized Fatigue							
I Balance							
✓ Hand Forces							
✓ Body Segment Angles							
Posture (Local Angles)							
✓ Joint Locations							
☑ Joint Forces							
Joint Moments							
Column Headers							
Include Column Headers							
Delimiter File Mode							
💿 Comma 🛛 💿 Appen	Ы						
C Tab C Overw	rite						
Ok Cancel							

Figure 11.19: Export Summary Options Dialog

11.16.1 Export Output File Format

All selected output values for each analysis are exported on one line as text values. The following values are always exported at the beginning of the line: Analyst, company, units, task name, gender, height, and body weight. Immediately thereafter follow selected blocks of data values. Each block begins with the block abbreviation text (string value). The block names, block abbreviations, and the data values in order of listing are in the columns below. Be sure to turn on the Column Headers. This makes it much easier to identify the columns of data.

Balance

"balance" COG X COG Y COP X COP Y Stability Left load Right load

Body Segment Angles

"seg ang" **R** Hand Vert R Hand Horz R Hand Rot **R** Forearm Vert R Forearm Horz R Upper arm Vert R Upper arm Horz **R** Clavicle Vert **R** Clavicle Horz R Upper leg Vert R Upper leg Horz **R** Lower leg Vert R Lower leg Horz R Foot Vert **R** Foot Horz L Hand Vert L Hand Horz L Hand Rot L Forearm Vert L Forearm Horz L Upper arm Vert L Upper arm Horz L Clavicle Vert L Clavicle Horz L Upper leg Vert L Upper leg Horz L Lower leg Vert L Lower leg Horz L Foot Vert L Foot Horz L Neck Lat. Bend 3D SSPP User's Manual L Neck Flexion L Neck Axial Trunk Lateral Bending Trunk Flexion Trunk Axial Rotation Pelvis Lateral Bending Pelvis Forward Tilt Pelvis Axial Rotation

Fatigue Values

"fatigue" Nine values are given for each of the strengths below: 5th% [%MVC, %DC, Dur(s)] 25th% [%MVC, %DC, Dur(s)] 50th% [%MVC, %DC, Dur(s)] **R** Wrist Flexion **R** Wrist Deviation **R** Forearm Rotation **R Elbow Flexion R** Humeral Rotation **R** Shoulder Rotation **R** Shoulder Abduction **R** Hip Flexion **R** Knee Flexion **R** Ankle Flexion L Wrist Flexion L Wrist Deviation L Forearm Rotation L Elbow Flexion L Humeral Rotation L Shoulder Rotation L Shoulder Abduction L Hip Flexion L Knee Flexion L Ankle Flexion Torso Flexion **Torso Lateral Bending Torso Rotation** Neck Flexion Neck Lat. Bending Neck Rotation

Hand Forces

"hand forces" **R** Force Magnitude **R** Force Vert Angle **R** Force Horz Angle L Force Magnitude L Force Vert Angle L Force Horz Angle R Force X Comp. R Force Y Comp. R Force Z Comp. L Force X Comp. L Force Y Comp. L Force Z Comp. R Torque X Comp. R Torque Y Comp. R Torque Z Comp. L Torque X Comp. L Torque Y Comp. L Torque Z Comp.

Joint Forces

"int forces" Three values are given for each joint below (x, y, z). Following are internal forces. R Hand **R** Wrist **R** Elbow **R** Shoulder R Hip R Knee R Ankle R Ball of Foot L Hand L Wrist L Elbow L Shoulder L Hip L Knee L Ankle L Ball of Foot

Tragion C1 C3/C4 C7/T1 L5/S1 Center of Hips Following forces are support forces. **Back Rest** R IT **R** Forward Seat R Toe R Heel **R** Foot Center I IT L Forward Seat L Toe L Heel L Foot Center

Joint Locations

"int loc" Three values are given for each joint below (x, y, z). R Hand **R** Wrist **R** Elbow **R** Shoulder R Hip R IT R Knee **R** Ankle R Heel R Foot center R Ball of foot R Toe L Hand L Wrist L Elbow L Shoulder L Hip LIT L Knee L Ankle

L Heel I Foot Center L Ball of foot L Toe Tragion Nasion C1 C3/C4 C7/T1 SCJ L5/S1 Hip center IT center Center between feet (ankles) at floor Center between toes of feet at floor

Joint Moments

"jnt mom" Three values are given for each joint below (x, y, z). R Hand **R** Wrist **R** Elbow R Shoulder R Hip R Knee **R** Ankle R Heel R Ball of Foot L Hand L Wrist L Elbow L Shoulder L Hip L Knee L Ankle L Heel L Ball of Foot Tragion C1 C3/C4 C7/T1 L5/S1 Center of Hips

Low-Back "low back" L5/S1 Compression L5/S1 Comp SD L5/S1 Sagittal Shear L5/S1 Forward Shear L4/L5 Compression L4/L5 Forward Shear L4/L5 Lateral Shear Five values are given for each muscle below: resultant force, shear force, X, Y, and Z forces. R Erector Spi R Rectus Abdo. R Internal Ob. R External Ob. R Latis. Dorsi. L Erector Spi. L Rectus Abdo. L Internal Ob. L External Ob. L Latis. Dorsi.

Posture Angles

"post ang" R Hand Flexion **R** Hand Deviation **R** Forearm Rot **R** Flbow Included R Shoulder Vert **R** Shoulder Horz **R** Humeral Rotation R Hip Included R Hip Vert R Hip Horz **R** Femur Rotation R Lower leg Rot R Knee Incl R Ankle Incl L Hand Flexion L Hand Deviation L Forearm Rot L Elbow Incl L Shoulder Vert L Shoulder Horz L Humeral Rotation L Hip Incl L Hip Vert L Hip Horz L Femur Rotation L Lower leg Rot L Knee Incl L Ankle Incl Head Flexion **Upper Neck Flexion**

Upper Neck Axial Rotation Upper Neck Lat. Bending Lower Neck Flexion Lower Neck Axial Rotation Lower Neck Lat. Bending Trunk Flexion from L5/S1 Adjusted Trunk Axial Rotation Adjusted Trunk Lateral Bending Pelvis Flexion Pelvis Axial Rotation Angle Pelvis Lateral Bending Angle L5/S1 Tilt Angle

Strength Capabilities

"pop str % cap" R Wrist Flex/Ext R Wrist Ulnr/Rad Dev **R** Forearm Rot R Elbow Flex/Ext R Shldr Humeral Rot R Shldr Fwd/Bkwd R Shldr Adduc/Abduc R Hip Flex/Ext R Knee Flex/Ext R Ankle Flex/Ext L Wrist Flex/Ext L Wrist Ulnr/Rad Dev L Forearm Rot L Elbow Flex/Ext L Shldr Humeral Rot L Shldr Fwd/Bkwd L Shldr Adduc/Abduc L Hip Flex/Ext L Knee Flex/Ext L Ankle Flex/Ext Torso Flex/Ext Torso Lat Bend **Torso Axial Rot** Neck Flex/Ext Neck Lat Bend Neck Axial Rot "joint str cap" R Wrist Flex/Ext R Wrist Ulnr/Rad Dev **R** Forearm Rot R Elbow Flex/Ext R Shldr Humeral Rot R Shldr Fwd/Bkwd R Shldr Adduc/Abduc R Hip Flex/Ext R Knee Flex/Ext R Ankle Flex/Ext L Wrist Flex/Ext L Wrist Ulnr/Rad Dev

L Forearm Rot L Elbow Flex/Ext L Shldr Humeral Rot L Shldr Fwd/Bkwd L Shldr Adduc/Abduc L Hip Flex/Ext L Knee Flex/Ext Torso Flex/Ext Torso Flex/Ext Torso Lat Bend Torso Axial Rot Neck Lat Bend Neck Axial Rot

Summary Results

"summary" L5/S1 Compression L4/L5 Compression Wrist Summary Cap Elbow Summary Cap Shldr Summary Cap Neck Summary Cap Hip Summary Cap Knee Summary Cap Ankle Summary Cap Coef of Friction

REFERENCES

ACGIH; "Upper Limb Localized Fatigue: TLV(R) Physical Agents 7th Edition Documentation;" Report number 7DOC-782; ACGIH, Cincinnati, Ohio, 2016.

Anderson, C.K., Chaffin, D.B., Herrin, G.D., and Matthews, L.S.; "A Biomechanical Model of the Lumbosacral Joint During Lifting Activities"; J. Biomechanics, 18(8):571-584, 1985.

Anderson, C.K.; "A Biomechanical Model of the Lumbosacral Joint for Lifting Activities;" Ph.D. Thesis; Department of Industrial and Operations Engineering, The University of Michigan, 1983.

Anderson, P.A., Chanoski, C.E., Devan, D.L., Mcmahon, B.L., Whelan, E.P.; "Normative Study of Grip and Wrist Flexion Strength Employing a BTE Work Simulator"; Journal of Hand Surgery, 15A(3):420-425, 1990.

Bazergui, A., Lamy, CX., and Farfan, H.F.; "Mechanical Properties of the Lumbodorsal Fascia;" Paper number IA-08; Proceedings of the 1978 Society for Experimental Stress Analysis Meeting, Wichita, KS, 1978.

Bean J. C., Chaffin D. B., Schultz A. B.; "Biomechanical Model Calculation of Muscle Contraction Forces: A Double Linear Programming Method;" J. Biomechanics, 21:5966, 1988.

Beck, D. J.; "An Evaluation of Inverse Kinematics Models for Posture Prediction;" computeraided Ergonomics and Safety Conference, Tampere, Finland, 1992.

Bjornstrup, J.; "Estimation of Human Body Segment Parameters – Statistical Analysis of Results from Prior Investigations;" Technical report ISSN 0906-6233; LIA 96-7, Laboratory of Image Analysis, Institute of Electronic Systems, Aalborg University, June 1996.

Burgraaff, J. D.; "An Isometric Biomechanical Model for Sagittal Plane Leg Extension;" Unpublished MS Thesis; Industrial and Operations Engineering, College of Engineering, University of Michigan, Ann Arbor, 1972.

Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Health and Nutrition Examination Survey Data, Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2010. Http:// www.cdc.gov/nchs/nhanes/nhanes_question naires.htm

Chaffin, D. B.; "On the Validity of Biomechanical Models of the Low-back for Weight Lifting Analysis;" ASME Proceedings, 75-WA-Biol. Amer. Soc. Of Mech. Eng., New York (1975).

Chaffin, D. B.; "Biomechanical Modeling for Simulation of 3D Static Human Exertions;" Chapter in <u>Computer Applications in</u> <u>Ergonomics, Occupational Safety and Health</u>; Elsevier Publishers, B.V., 1992.

Chaffin, D. B., Andersson, G. B. J., and Martin, B. J.; Occupational Biomechanics (4th edition); John Wiley & Sons, New York, 2006.

Chaffin, D.B., Faraway, J.J., Zhang, X., and Woolley, C.B.; "Stature, Age, and Gender Effects on Reach Motion Postures;" Human Factors, 42 (3):408-420, 2000.

Chaffin, D. B., Freivalds, A. (1981). On the validity of an isometric biomechanical strength model. Spring Annual Conference and World Productivity Congress—American Institute of Industrial Engineers, Inc.; Detroit, MI, Code 1405

Chaffin, D. B., Freivalds, A., & Evans, S. M. (1987). On the validity of an isometric biomechanical model of worker strengths. *IIE transactions*, *19*(3), 280-288. Chaffin, Schultz and Snyder, 1972

Chaffin, D. B., Redfern, M. S., Erig, M., Goldstein S. A.; Lumbar Muscle Size and Locations from CT Scans of 96 Women of age 40 to 63 Years;" Clinical Biomechanics, 5(1):9-16, 1990.

Clarke, H. H.; <u>Muscle Strength and Endurance in Man</u>, Prentice-Hall, Englewood Cliffs, pp 39-51, 1966.

Clauser, C.E., mcconville, J.T., and Young, J.W.; "Weight, Volume, and Center of Mass of Segments of the Human Body"; Report number AMRL-TR-69-70, Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio, NASA CR-11262, 1969.

De Leva, P.; "Adjustments to zatsiorskyseluyanov's Segment Inertia Parameters;" J. Biomechanics, 29(9):1223-1230, 1996.

3D SSPP User's Manual

Delp, S.L., Grierson, A.E., Buchanan, T.S.; "Maximum Isometric Moments Generated by the Wrist Muscles in Flexion-Extension and Radial-Ulnar Deviation"; Journal Biomechanics, 29(10):1371-1375, 1996.

Dempster, W. T.; "Space Requirements of the Seated Operator;" Report number: WADC-TR-55159, Aerospace Medical Research Laboratories, Dayton, Ohio, 1955.

Dickerson, C.R.; "A Biomechanical Analysis of Shoulder Loading and Effort During Load Transfer Tasks;" Ph.D. Thesis, Biomedical Engineering, University of Michigan, Ann Arbor, 2005.

Dickerson, C.R., Chaffin, D.B., and Hughes, R.E.; "A Mathematical Musculoskeletal Shoulder Model for Proactive Ergonomic Analysis," Computer Methods in Biomechanics and Biomedical Engineering, 10(6):389-400, 2007.

Dickerson, C.R., Hughes, R.E., and Chaffin, D.B.; "Experimental Evaluation of a Computational Shoulder Musculoskeletal Model," Clinical Biomechanics, 23:886-894, 2008.

Diffrient, N., Tilley, A., Bardagjy, J.; <u>Humanscale 1/2/3</u>; Henry Dreyfuss Associates, The MIT Press. Cambridge, Massachusetts. ISBN: 0-26254027-4, 1974.

Drillis, R., and Contini, R.; "Body Segment Parameters;" Report number: 1166-03, (Office of Vocational Rehabilitation, Dept. Of Health, Education and Welfare). NY Univ. School of Engineering and Science, New York, 1966.

Durkin, J.L., and Dowling, J.J.; "Analysis of Body Segment Parameter Differences between Four Human Populations and the Estimation Errors of Four Popular Mathematical Models;" Journal of Biomechanical Engineering, 125:515-522, 2003.

Faraway, J.J.; "Statistical Modeling of Reaching Motions using Functional Regression with Endpoint Constraints"; Journal of Visualization and Computer Animation, 14:31-41, 2003.

Faraway, J.J.; "Data-Based Motion Prediction;" Journal of Passenger Cars—Electronic and Electrical Systems, Proceedings of SAE Digital Human Modeling for Design and Engineering Conference, Montreal, Canada, pp 722-732, 2003

Farfan, H.F.; <u>Mechanical Disorders of the Low Back</u>; Lea and Febiger, Philadelphia, 1973.

Frey Law, L.A., and Avin, K.G.; "Endurance Time is Joint-Specific: A Modelling and metaanalysis Investigation;" Ergonomics, 53(1):109129, 2010

Garg, A.; "The Development and Validation of a 3Dimensional Hand Force Capability Model", Department of Industrial and Operations Engineering, The University of Michigan, 1973.

Hallbeck, M.S.; "Flexion and Extension Forces Generated by Wrist-Dedicated Muscles Over the Range of Motion"; Applied Ergonomics, 25 (6):379-385, 1994.

Holbein, M. A., and Chaffin, D. B.; "Stability Limits In Extreme Postures: Effects of Load Positioning, Foot Placement, and Strength;" Human Factors, 39(3):456-468, 1997.

Holbein-Jenny, M. A., mcdermott, K., Shaw, C., Demchak, J.; "Validity of Functional Stability Limits as a Measure of Balance in Adults Aged 23-73 Years;" Ergonomics, 50(5):631-646, 2007

Kerk, C. J., Chaffin, D. B., Keyserling, W. M.; "Stability as a Constraint in Sagittal Plane Human Force Exertion Modeling;" Occupational Ergonomics, 1(1):23-39, 1998.

Kerk, C. J., Chaffin, D. B., Page, G. B., Hughes, R. E.; "A Comprehensive Biomechanical Model Using Strength, Stability, and COF Constraints to Predict Hand Force Exertion Capability under Sagittally Symmetric Static Conditions;" IIE Transactions, 26(3):57-67, 1994.

Kishino, N.D., Mayer, T.G., Gatchel, R.J., mccrate Parrish, M., Anderson, C., Gustin, L., Mooney, V.; "Quantification of Lumbar Function: Part 4;" Spine, 10(10):921-927, 1985.

Kramer, J.F., Nusca, D., Bisbee, L., macdermid, J., Kemp, D., Boley, S.; "Forearm Pronation and Supination: Reliability of Absolute Torques and Non-dominant/Dominant Ratios"; Journal of Hand Therapy, 7(1):15-20, 1994.

Kumar, S.; "Moment Arms of Spinal Musculature determined from CT Scans;" Clinical Biomechanics, 3:137-44, 1988.

Kumar, S., Chaffin, D. B., and Redfern, M.; "Isometric and Isokinetic Back and Arm Lifting Strengths: Device and Measurement;" J Biomechanics, 21(1):35-44. 1988.

Mayer, T.G., Smith, S.S., Keeley, J., Mooney, V.; "Quantification of Lumbar Function: Part 2 and Part 3;" Spine, 10(8):765-772 and 10(10):912920, 1985.

Mcgill, S. M. And Norman, R. W.; "Partitioning of the L4/L5 Dynamic Moment into Disc, Ligamentous, and Muscular Components during Lifting;" Spine, 11: 666-78, 1986.

Mcgill, S. M. And Norman, R. W.; "Effects of an Anatomically Detailed Erector Spinae Model of L4/L5 Disc Compression and Shear;" J. Biomechanics, 20:591-600, 1987.

Mcgill, S. M., Patt, N., Norman, R. W.; "Measurement of the Trunk Musculature of Active Males using CT Scan Radiography: Implications for Force and Moment Generating Capacity about the L4/L5 Joint;" J Biomechanics, 21:329-41, 1988.

Merrill, Z., Perera, S., Chambers, A., and Cham, R.; "Age and body mass index associations with body segment parameters;" .J Biomechanics, 88:38-47, 2019.

National Institute for Occupational Safety and Health; <u>Work</u> <u>Practices Guide for Manual Lifting</u>; Technical report number: 81-122, U.S. Dept. Of Health and Human Services (NIOSH), Cincinnati, Ohio, 1981.

Nemeth, G. And Ohlsen, H.; "Moment Arm Lengths of Trunk Muscles to the Lumbosacral Joint Obtained in Vivo with Computed Tomography;" Spine, 11:158-60, 1986.

Ogden, C.L., Fryar, C.D., Carroll, M.D., Flegal, K.M.; "Mean Body Weight, Height, and Body Mass Index, United States 1960-2002"; Report number 347, Advance Data From Vital and Health Statistics, National Center for Health Statistics, Hyattsville, Maryland, 2004.

O'Sullivan, L.W., Gallwey, T.J.; "Forearm Torque Strengths and Discomfort Profiles in Pronation and Supination"; Ergonomics, 48(6):703-721, 2005.

Park B.K. and Reed M.P. 2015. "Parametric body shape model of standing children aged 3-11 years." *Ergonomics* 58(10): 1714-1725.

Parkinson, M.B., Chaffin, D.B., and Reed, M.P.; "Center of Pressure Excursion Capability in Performance of Seated Lateral-Reaching Tasks;" Clinical Biomechanics, 21:26-32, 2006.

Pheasant, S.; Bodyspace – Anthropometry, Ergonomics and the Design of Work; Taylor & Francis, 2001.

Reed, M.P., and Park, B.K.D. 2017. Human Shapes — Realistic human body shape models based on real data, Developed by

the University of Michigan Transportation Research Institute. Www.humanshape.org

Reed, M.P., Raschke, U., Tirumali, R., and Parkinson, M.B. 2014. "Developing and Implementing Parametric Human Body Shape Models in Ergonomic Software." International Digital Human Modeling Conference, 3rd, Tokyo, Japan.

Reid, J. G., Costigan, P. A., and Comrie, W.; "Prediction of Trunk Muscle Areas and Moment Arms by use of Anthropometric Measures;" Spine, 12:273-5, 1987.

Roebuck, J.A.; "Anthropometric Methods: Designing to Fit the Human Body;" Human Factors and Ergonomics Society, 1995.

Roebuck, J.A., Kroemer, K.H.E., Thomson, W.G.; <u>Engineering</u> <u>Anthropometry Methods</u>; wileyinterscience, New York, 1975.

Rohmert, W.; "Problems of Determination of Rest Allowances, Part 2: Determining Rest Allowances in Different Human Tasks;" Applied Ergonomics, 4:158-162, 1973.

Schanne, T.A.; "A Three-Dimensional Hand Force Capability Model for the Seated Operator;" Unpublished Ph.D. Thesis, Industrial and Operations Engineering, University of Michigan, Ann Arbor, 1972.

Smith, S.S. and Mayer, T.G.; "Quantification of Lumbar Function: Part 1;" Spine, 10(8):757764, 1985.

Stobbe, T.; "The Development of a Practical Strength Testing Program for Industry;" Unpublished Ph.D. Thesis, Industrial and Operations Engineering, University of Michigan, Ann Arbor, 1980.

Tilley, A.R.; The Measure of Man and Woman – Human Factors in Design; Henry Dreyfuss Associates, 1993.

Tracy, M., Gibson, M.J., Szypryt, E.P., Rutherford, A., Corlett, E.N.; "The Geometry of the Muscles of the Lumbar Spine determined by Magnetic Resonance Imaging;" Spine, 14:186-93, 1989.

Waters, T.R., Putz-Anderson, V., Garg, A., Fine, L. J.; "Revised NIOSH Equation for the Design and Evaluation of Manual Lifting Tasks;" Ergonomics, 36(7):749 -776, 1993.

Webb Associates, <u>Anthropometric Source Book, Vol. I</u>; NASA 1024, National Aeronautics and Space Administration, Washington, DC, 1978.

Wilhelm, G.A.; "The Effects of Gender, Wrist Angle, Exertion Direction, Angular Velocity, and Simultaneous Grasp Force on Isokinetic Wrist Torque"; Master's Thesis Graduate College at the University of Nebraska, 1997. Zatsiorsky, V.M., Seluyanov, V.N., Chugunova, L.G.; "Methods of Determining Mass-Inertial Characteristics of Human Body Segments;" In <u>Contemporary Problems of Biomechanics</u> (Edited by C.G. Chernyi and S.A. Regirer), pp. 272-291, CRC Press, Massachusetts, 1990.

INDEX TO SECTIONS

3D low-back; see Disc compression force Abdominal force, 1.3.2, 11.5 Action Limit; see NIOSH limits Active window, see Printing, Active window Adjusting posture Body segment angles; see Body segment angles Direct manipulation, 3.5 Analyst name (task description), 6.1 Animation Editing frames, 5.3, 10.2.3 Frame control bar, 10.2 Frames per second, 10.6 Insert frames, 10.2.4 Interpolation, 10.4 Length, 10.4.2 Predicted, 10.4 Ankle Included angle, see Posture Report Anthropometry, 6.5 Center of mass, 6.5.2.3, 6.5.7, 11.7, 11.8, 11.9 Factors; see Population factors Gender, 6.5.1 Height, 6.5.2 Link lengths, 6.5.4, 11.7 Link weights, 6.5.4, 11.7 Percentiles, 6.5.3 Report, 11.7 Weight, 6.5.3 Applied forces and moments, 6.6, 6.7 Hand Loads 6.6, Force display, 8.1 AVI file; 10.5 Avatar; see Human Figure Avatar-view, 1.7, 3.6, 9 Context popup menu, 3.6 Axial rotation; see Body segment angles Azimuth; see Environment objects Back compression force; see Disc compression force Back compression design limit; see NIOSH limits Back compression upper limit; see NIOSH limits Background Color; see Color Image, 8.9, 9.5 Back rest, 6.4.2 See also Support selection Balance Basis of support, 11.8.3, 11.8.4 Center of Body Mass, 11.8.4 Center of Gravity, 11.8.4 Center of Pressure, 11.2.5 Calculation of, 11.8.2 Conditions, 11.8.5 Functional stability region, 11.8.3, 11.8.4

3D SSPP User's Manual

Reports, 11.8 Status window, 3.7.6 Barrier; see Environment objects Batch files operation, 6.13 Command structure, 6.13.1.2 Example file, 6.13.17 Body segment angles, 6.8 Angle descriptions, 6.8.3 **Clavicles angles** Horizontal, 6.8.3.5 Vertical, 6.8.3.6 Dialog box, 6.8.1 Femoral rotation, 6.8.3.4 Head angles Axial rotation, 6.8.4.3 Flexion. 6.8.4.1 Lateral bending, 6.8.4.2 Horizontal angles, 6.8.3.1 Humeral rotation, 6.8.3.3 Increment, 6.8.1 Neutral, 6.8.1 Pelvic angles Axial rotation, 6.8.3.12 Forward rotation, 6.8.3.10 Lateral tilt, 6.8.3.11 Shift Key Use, 6.8.1.1 **Trunk angles** Axial rotation, 6.8.3.9 Calculated (torso), 6.8.3.7 Direct manipulation, 3.5.3.2, 3.5.3.3 Flexion, 6.8.3.7 Lateral bending, 6.8.3.8 Vertical angles, 6.8.3.2 Camera, 9.4 Distance, 1.7, 9.4 Focal length, 1.7, 9.4 Rotation, 1.7, 9.4 Vertical tilt, 1.7, 9.4 Center of gravity; see Balance Center of mass, 6.5.7, 11.7, 11.8, 11.9 Center of pressure, see Balance Clavicles; see Body segment angles Clipboard, see Printing, Using Window's clipboard Copy application, 4.13 Copy desktop, 4.14 Coefficient of ground friction, 11.2.6 Status window, 3.7.7 Color Background, 9.5.2 Clothing, 9.2.4 Environment, 9.3.4 Human figure, 9.2 Comments (task description), 6.1 Compression force; see Disc compression force

Context "pop-up" menu Animation frame control bar, 10.2.2 Avatar-view, 3.6 Stick-view, 3.4, 8.10 Coordinate system, 7.4 Center, 1.4, 7.4 Changing, 7.4 Definition, 1.4 Forces report, 11.11 Cube; see Environment object, Handheld object Cylinder; see Environment object, Handheld object Default task Setting, 4.5 Resetting to program default, 4.6 Description (task description), 6.1 Digital image; see Background, Image Direct manipulation; see Posture entry methods **Disc compression force** Analysis summary report, 11.2.3 3D low-back report, 11.4 L4/L5 disc, 1.3.3 L5/S1 disc, 1.3.2 L5/S1 report, 11.5 Limits, 1.3.3.1 NIOSH guidelines, 1.3.3.1 Sagittal plane low-back, 1.3.2, 11.5 Status window, 3.7.3 Optimization algorithm, 1.3.3, 11.4 Distance; see Camera or Environment objects, Barrier Dynamic mode; see Mode Elevation; see Environment objects, Barrier Environment objects, 9.3 Azimuth, 9.3.3 Barrier, 9.3.3 Color, 9.3.4 Elevation, 9.3.3 Floor, 9.3.1 Handheld object, 9.3.2 Erector spinae muscle, 1.3.2, 11.4, 11.5 Error reporting, 1.6 Exit, 4.16 Export output summary, 11.16 File format, 11.16.1 Fatigue Report, 11.3 Feet Balance, 11.8 Center of feet as coordinate system center, 7.5 Direct manipulation, 3.5 Ground friction, 11.2.6 Load on feet, 11.11 Location, see Joint Locations Report

Shoes, 6.5.5 Support, 6.4.1 File Operations, 4.1 to 4.4 Finger Posture Angles, 6.12 Flesh; see Human figure, Model type Floor; see Environment objects Focal length; see Camera Force Hands; see Hand loads Report. 11.11 Forearm angles; see Body segment angles Frontal plane, 8 Gender; see Anthropometry Graphic human model; see Human figure Gravity, 6.3 Hand forces; see Hand loads Handheld object; see Environment objects Hand loads Arrow display, 8.1 Arrow colors, 8.2 Dialog, 6.6 Descriptor, 6.6 Force vectors, 6.6.1, 6.6.2 Magnitude, 6.6 Torques, 6.6.4 Vector components, 6.6.4, 11.2.1 Hand locations Direct manipulation, 3.5.3.4 Measurement, 1.4 Status window, 3.7.2 Hand orientation; see Posture prediction see Hand posture Hand position; see Hand locations Hand Posture, 6.12 Pre-Set, 6.12.3 Wrist posture; see Wrist Posture Height, see Anthropometry Stature entry, 6.5.3 Hand object height, 9.3.2 Population value, 6.5.8.5 Hips Included angle, see Posture Report Direct manipulation, 3.5.3.1 Horizontal plane, 8 Human figure, 9.2 Avatar Type, 9.2.1 Color, 9.2.4, 9.2.5 Model types (frame/flesh), 9.2.2 Hand posture, 6.12 Lighting, 9.6 Transparency with image background, 9.5.3

Humeral rotation angle; see Shoulder Image; see Background Image Included joint angles, see Posture Report Increment Body segment angles, 6.8.1 Hand loads, 6.6 Hand posture, 6.12 Inverse kinematics; see Posture entry method Joint angles; see Body segment angles or Included joint angles Joint locations Report, 11.10 Knee Included angle, see Posture Report L4/L5 disc, 1.3.3 Report, 11.4 L5/S1 disc; see Disc compression force Definition, 1.3.2 Forces and moments, 1.3.2 Ligament strain, see Ligament strain Location, see Joint Locations Report Report, 11.5 Lateral bending; see Body segment angles Leg loads, 11.8.6 Length of barrier; see Environment objects, Barrier Ligament strain (L5/S1), 11.5.1 Lighting (graphic display), 9.6 Link lengths; see Anthropometry Link weights; see Anthropometry Localized Fatigue, 11.3, 11.2.4 Locking mode, 6.11 Lower arm angle; see Body segment angles Lower leg angle; see Body segment angles Lumbar Forces and moments; see L5/S1 Lumbodorsal fascia, 11.5.1 Maintain hand positions, 6.5.6 Maximum Duty Cycle, 3.7.8, see Posture Report Maximum permissible limit (MPL); see NIOSH limits Maximum Static Duration, 3.7.8, 11.3 Mean strength, 11.6 Model type; see Human figure Moments Hand, 6.6.4, 6.13.6 Report, 11.12 Motion; see Animation **NIOSH** limits Action limit (AL), 1.3.1.1 Disc compression guidelines, 1.3.3.1, 11.2.3.1 Strength guidelines, 1.3.1.1, 11.2.2.1 Maximum permissible limit (MPL), 1.3.1.1

Opening files; see File, Operations Pelvic Forward rotation angle, 6.8.3.10 Adjustment, 6.4.3 From trunk flexion, 3.5.3.2 Lateral tilt angle, 6.8.3.11 Reported, see Posture Report Percent capable; see Strength percent capable Percentiles; see Anthropometry Percent Maximum Voluntary Contraction, 3.7.5, 11.3 Photo; see Background Image Population factors, 6.5.7, 6.5.8 Weight and stature, 6.5.8.5 Population strength, 1.3.1, 11.6 Altering, 6.5.8.4 Popup Menus; see Context Menus Posture report, 11.13 Posture entry methods Body segment angle entry, 6.8 Use of Shift Key, 6.8.1.1 Direct manipulation, 3.5 Inverse kinematics, 1.3, 3.5.1, 6.10.1 Pre-set Postures, see Pre-Set Postures Posture prediction, 6.10 Pre-set postures, 6.9 Printer, 4.8 Printing Active window, 4.9 Application, 4.10 Desktop, 4.11 Preview, 4.7 Reports, see Reports Multiple, 11.15 Setup, 4.8 Using Windows' clipboard, 4.15 Pronation; see Hand posture, Rotation Prone; see Hand orientation Quitting program; see Exit Range of Joint Motion Limits, 3.5.4, 11.13.1 Rectus abdominus muscle, 1.3.2, 11.4, 11.5 Reactive load, 1.7, Reactive moments, 1.3.1 Redo, 5.1, 5.2 Reports, 11, 3.10 Printing, 4.7 to 4.11 Printing multiple reports, 11.17 Units, 6.2, see also Exporting output summary Resultant load moment, 1.7

SDL, SUL; see NIOSH limits SRP; see Seat reference point

Rotation; see Camera

Sagittal plane, 8 Low-back report, 11.5 Saving data; see Files Seat; see Support selection Pan, 6.4.2 Seat reference point, 6.4, 6.4.2 Seated mode; see Support mode Segment locking; see Locking mode Shear forces, 1.3.2, 1.3.3, 11.4, 11.5 Shoes, 6.5.5 Height, 6.5.5 Shoulder Included angles, see Posture Report Location, see Joint Locations Report Stick-view, 1.7, 3.4, 8 Force vectors, 8.1 Colors, 8.4 Context menu, 3.4 Support forces, 8.2 Slips and falls; see Coefficient of ground friction Sphere; see Environment objects, Handheld object Standing mode support; see Support mode Static mode; see Mode Static strength model, 1.3.1 Status bar, 3.9, 7.5 Strength Data base, 1.3.1, 11.6 Direction vectors, 11.14 Model, 1.3.1 Limits; see NIOSH limits Changing, 7.3 Strength percent capable Analysis summary report, 11.2.2 Concept, 1.3.1, 11.6 Limits; see NIOSH limits Reported, 11.6 Status window, 3.7.4 Supination; see Hand posture, Rotation Supine; see Hand orientation Support mode, 6.4 Support Selection, 6.4 Back rest, 6.4.2.2 Feet, 6.4.1 Seat type, 6.4.2 Seat pan, 6.4.2 Seated mode, 6.4.2 Standing mode, 6.4.2 Symmetry Body segment angles, 6.8.1 Hand posture, 6.12 Posture prediction, 6.10.2

Table; see Environment objects, Barrier Task name (task description), 6.1 Thickness; see Environment objects, Barrier Tile now, 7.2 Tiling, 3.3, 7.2 Auto tiling, 7.1 Top-down model, 1.3.1 Torque; see Moments Hand, 6.6.4 Transparent; see Human figure Type; see Environment objects, Barrier or Handheld objects Typefaces, 1.8

Undo, 5.1, 5.2 Units (English/metric), 6.2 Unlocking body segments; *see Locking mode*

Vectors (force); *see Hand loads* Vertical tilt; *see Camera* Video file; *see AVI file*

Wall; see Environment objects, Barrier Weight; see Anthropometry Width; see Environment objects, Barrier or Handheld objects Wrist posture Horizontal angle, 6.8.6.1.1 Rotation angle, 6.8.6.1.3 Vertical angle, 6.8.6.1.2

Zoom; see Print preview, see also Camera, Focal length